ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expadd GIF version

Theorem expadd 10673
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
Assertion
Ref Expression
expadd ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Proof of Theorem expadd
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . . . . 7 (𝑗 = 0 → (𝑀 + 𝑗) = (𝑀 + 0))
21oveq2d 5938 . . . . . 6 (𝑗 = 0 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 0)))
3 oveq2 5930 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
43oveq2d 5938 . . . . . 6 (𝑗 = 0 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴↑0)))
52, 4eqeq12d 2211 . . . . 5 (𝑗 = 0 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0))))
65imbi2d 230 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0)))))
7 oveq2 5930 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 + 𝑗) = (𝑀 + 𝑘))
87oveq2d 5938 . . . . . 6 (𝑗 = 𝑘 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 𝑘)))
9 oveq2 5930 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
109oveq2d 5938 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴𝑘)))
118, 10eqeq12d 2211 . . . . 5 (𝑗 = 𝑘 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘))))
1211imbi2d 230 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)))))
13 oveq2 5930 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀 + 𝑗) = (𝑀 + (𝑘 + 1)))
1413oveq2d 5938 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + (𝑘 + 1))))
15 oveq2 5930 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
1615oveq2d 5938 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))
1714, 16eqeq12d 2211 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1)))))
1817imbi2d 230 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
19 oveq2 5930 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 + 𝑗) = (𝑀 + 𝑁))
2019oveq2d 5938 . . . . . 6 (𝑗 = 𝑁 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 𝑁)))
21 oveq2 5930 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
2221oveq2d 5938 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴𝑁)))
2320, 22eqeq12d 2211 . . . . 5 (𝑗 = 𝑁 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
2423imbi2d 230 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))))
25 nn0cn 9259 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
2625addridd 8175 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 + 0) = 𝑀)
2726adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 0) = 𝑀)
2827oveq2d 5938 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = (𝐴𝑀))
29 expcl 10649 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
3029mulridd 8043 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) · 1) = (𝐴𝑀))
3128, 30eqtr4d 2232 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · 1))
32 exp0 10635 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3332adantr 276 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑0) = 1)
3433oveq2d 5938 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑0)) = ((𝐴𝑀) · 1))
3531, 34eqtr4d 2232 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0)))
36 oveq1 5929 . . . . . . 7 ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → ((𝐴↑(𝑀 + 𝑘)) · 𝐴) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴))
37 nn0cn 9259 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
38 ax-1cn 7972 . . . . . . . . . . . . 13 1 ∈ ℂ
39 addass 8009 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4038, 39mp3an3 1337 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4125, 37, 40syl2an 289 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4241adantll 476 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4342oveq2d 5938 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = (𝐴↑(𝑀 + (𝑘 + 1))))
44 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
45 nn0addcl 9284 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
4645adantll 476 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
47 expp1 10638 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 + 𝑘) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
4844, 46, 47syl2anc 411 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
4943, 48eqtr3d 2231 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
50 expp1 10638 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5150adantlr 477 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5251oveq2d 5938 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) = ((𝐴𝑀) · ((𝐴𝑘) · 𝐴)))
5329adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
54 expcl 10649 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
5554adantlr 477 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
5653, 55, 44mulassd 8050 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑀) · (𝐴𝑘)) · 𝐴) = ((𝐴𝑀) · ((𝐴𝑘) · 𝐴)))
5752, 56eqtr4d 2232 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴))
5849, 57eqeq12d 2211 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) ↔ ((𝐴↑(𝑀 + 𝑘)) · 𝐴) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴)))
5936, 58imbitrrid 156 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1)))))
6059expcom 116 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
6160a2d 26 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘))) → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
626, 12, 18, 24, 35, 61nn0ind 9440 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
6362expdcom 1453 . 2 (𝐴 ∈ ℂ → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))))
64633imp 1195 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  0cn0 9249  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  expaddzaplem  10674  expaddzap  10675  expmul  10676  i4  10734  expaddd  10767  ef01bndlem  11921  modxai  12585  numexp2x  12594  2exp5  12601  2exp11  12605
  Copyright terms: Public domain W3C validator