ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expadd GIF version

Theorem expadd 10770
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
Assertion
Ref Expression
expadd ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Proof of Theorem expadd
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5982 . . . . . . 7 (𝑗 = 0 → (𝑀 + 𝑗) = (𝑀 + 0))
21oveq2d 5990 . . . . . 6 (𝑗 = 0 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 0)))
3 oveq2 5982 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
43oveq2d 5990 . . . . . 6 (𝑗 = 0 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴↑0)))
52, 4eqeq12d 2224 . . . . 5 (𝑗 = 0 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0))))
65imbi2d 230 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0)))))
7 oveq2 5982 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 + 𝑗) = (𝑀 + 𝑘))
87oveq2d 5990 . . . . . 6 (𝑗 = 𝑘 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 𝑘)))
9 oveq2 5982 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
109oveq2d 5990 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴𝑘)))
118, 10eqeq12d 2224 . . . . 5 (𝑗 = 𝑘 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘))))
1211imbi2d 230 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)))))
13 oveq2 5982 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀 + 𝑗) = (𝑀 + (𝑘 + 1)))
1413oveq2d 5990 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + (𝑘 + 1))))
15 oveq2 5982 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
1615oveq2d 5990 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))
1714, 16eqeq12d 2224 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1)))))
1817imbi2d 230 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
19 oveq2 5982 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 + 𝑗) = (𝑀 + 𝑁))
2019oveq2d 5990 . . . . . 6 (𝑗 = 𝑁 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 𝑁)))
21 oveq2 5982 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
2221oveq2d 5990 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑀) · (𝐴𝑗)) = ((𝐴𝑀) · (𝐴𝑁)))
2320, 22eqeq12d 2224 . . . . 5 (𝑗 = 𝑁 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗)) ↔ (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
2423imbi2d 230 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴𝑀) · (𝐴𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))))
25 nn0cn 9347 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
2625addridd 8263 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 + 0) = 𝑀)
2726adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 0) = 𝑀)
2827oveq2d 5990 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = (𝐴𝑀))
29 expcl 10746 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
3029mulridd 8131 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) · 1) = (𝐴𝑀))
3128, 30eqtr4d 2245 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · 1))
32 exp0 10732 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3332adantr 276 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑0) = 1)
3433oveq2d 5990 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑0)) = ((𝐴𝑀) · 1))
3531, 34eqtr4d 2245 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴𝑀) · (𝐴↑0)))
36 oveq1 5981 . . . . . . 7 ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → ((𝐴↑(𝑀 + 𝑘)) · 𝐴) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴))
37 nn0cn 9347 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
38 ax-1cn 8060 . . . . . . . . . . . . 13 1 ∈ ℂ
39 addass 8097 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4038, 39mp3an3 1341 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4125, 37, 40syl2an 289 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4241adantll 476 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
4342oveq2d 5990 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = (𝐴↑(𝑀 + (𝑘 + 1))))
44 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
45 nn0addcl 9372 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
4645adantll 476 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
47 expp1 10735 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 + 𝑘) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
4844, 46, 47syl2anc 411 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
4943, 48eqtr3d 2244 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴))
50 expp1 10735 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5150adantlr 477 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5251oveq2d 5990 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) = ((𝐴𝑀) · ((𝐴𝑘) · 𝐴)))
5329adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
54 expcl 10746 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
5554adantlr 477 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
5653, 55, 44mulassd 8138 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑀) · (𝐴𝑘)) · 𝐴) = ((𝐴𝑀) · ((𝐴𝑘) · 𝐴)))
5752, 56eqtr4d 2245 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴))
5849, 57eqeq12d 2224 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))) ↔ ((𝐴↑(𝑀 + 𝑘)) · 𝐴) = (((𝐴𝑀) · (𝐴𝑘)) · 𝐴)))
5936, 58imbitrrid 156 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1)))))
6059expcom 116 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘)) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
6160a2d 26 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑘)) = ((𝐴𝑀) · (𝐴𝑘))) → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴𝑀) · (𝐴↑(𝑘 + 1))))))
626, 12, 18, 24, 35, 61nn0ind 9529 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
6362expdcom 1465 . 2 (𝐴 ∈ ℂ → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))))
64633imp 1198 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972  0cn0 9337  cexp 10727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-seqfrec 10637  df-exp 10728
This theorem is referenced by:  expaddzaplem  10771  expaddzap  10772  expmul  10773  i4  10831  expaddd  10864  ef01bndlem  12233  modxai  12905  numexp2x  12914  2exp5  12921  2exp11  12925
  Copyright terms: Public domain W3C validator