Step | Hyp | Ref
| Expression |
1 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑗 = 0 → (𝑀 + 𝑗) = (𝑀 + 0)) |
2 | 1 | oveq2d 5869 |
. . . . . 6
⊢ (𝑗 = 0 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 0))) |
3 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑗 = 0 → (𝐴↑𝑗) = (𝐴↑0)) |
4 | 3 | oveq2d 5869 |
. . . . . 6
⊢ (𝑗 = 0 → ((𝐴↑𝑀) · (𝐴↑𝑗)) = ((𝐴↑𝑀) · (𝐴↑0))) |
5 | 2, 4 | eqeq12d 2185 |
. . . . 5
⊢ (𝑗 = 0 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴↑𝑀) · (𝐴↑𝑗)) ↔ (𝐴↑(𝑀 + 0)) = ((𝐴↑𝑀) · (𝐴↑0)))) |
6 | 5 | imbi2d 229 |
. . . 4
⊢ (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴↑𝑀) · (𝐴↑𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 0)) = ((𝐴↑𝑀) · (𝐴↑0))))) |
7 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝑀 + 𝑗) = (𝑀 + 𝑘)) |
8 | 7 | oveq2d 5869 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 𝑘))) |
9 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) |
10 | 9 | oveq2d 5869 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝐴↑𝑀) · (𝐴↑𝑗)) = ((𝐴↑𝑀) · (𝐴↑𝑘))) |
11 | 8, 10 | eqeq12d 2185 |
. . . . 5
⊢ (𝑗 = 𝑘 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴↑𝑀) · (𝐴↑𝑗)) ↔ (𝐴↑(𝑀 + 𝑘)) = ((𝐴↑𝑀) · (𝐴↑𝑘)))) |
12 | 11 | imbi2d 229 |
. . . 4
⊢ (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴↑𝑀) · (𝐴↑𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑘)) = ((𝐴↑𝑀) · (𝐴↑𝑘))))) |
13 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → (𝑀 + 𝑗) = (𝑀 + (𝑘 + 1))) |
14 | 13 | oveq2d 5869 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + (𝑘 + 1)))) |
15 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) |
16 | 15 | oveq2d 5869 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → ((𝐴↑𝑀) · (𝐴↑𝑗)) = ((𝐴↑𝑀) · (𝐴↑(𝑘 + 1)))) |
17 | 14, 16 | eqeq12d 2185 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴↑𝑀) · (𝐴↑𝑗)) ↔ (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴↑𝑀) · (𝐴↑(𝑘 + 1))))) |
18 | 17 | imbi2d 229 |
. . . 4
⊢ (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴↑𝑀) · (𝐴↑𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴↑𝑀) · (𝐴↑(𝑘 + 1)))))) |
19 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑗 = 𝑁 → (𝑀 + 𝑗) = (𝑀 + 𝑁)) |
20 | 19 | oveq2d 5869 |
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝐴↑(𝑀 + 𝑗)) = (𝐴↑(𝑀 + 𝑁))) |
21 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) |
22 | 21 | oveq2d 5869 |
. . . . . 6
⊢ (𝑗 = 𝑁 → ((𝐴↑𝑀) · (𝐴↑𝑗)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) |
23 | 20, 22 | eqeq12d 2185 |
. . . . 5
⊢ (𝑗 = 𝑁 → ((𝐴↑(𝑀 + 𝑗)) = ((𝐴↑𝑀) · (𝐴↑𝑗)) ↔ (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁)))) |
24 | 23 | imbi2d 229 |
. . . 4
⊢ (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑗)) = ((𝐴↑𝑀) · (𝐴↑𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))))) |
25 | | nn0cn 9145 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℂ) |
26 | 25 | addid1d 8068 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0
→ (𝑀 + 0) = 𝑀) |
27 | 26 | adantl 275 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝑀 + 0) = 𝑀) |
28 | 27 | oveq2d 5869 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑(𝑀 + 0)) = (𝐴↑𝑀)) |
29 | | expcl 10494 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑𝑀) ∈
ℂ) |
30 | 29 | mulid1d 7937 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ ((𝐴↑𝑀) · 1) = (𝐴↑𝑀)) |
31 | 28, 30 | eqtr4d 2206 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑(𝑀 + 0)) = ((𝐴↑𝑀) · 1)) |
32 | | exp0 10480 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
33 | 32 | adantr 274 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑0) =
1) |
34 | 33 | oveq2d 5869 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ ((𝐴↑𝑀) · (𝐴↑0)) = ((𝐴↑𝑀) · 1)) |
35 | 31, 34 | eqtr4d 2206 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑(𝑀 + 0)) = ((𝐴↑𝑀) · (𝐴↑0))) |
36 | | oveq1 5860 |
. . . . . . 7
⊢ ((𝐴↑(𝑀 + 𝑘)) = ((𝐴↑𝑀) · (𝐴↑𝑘)) → ((𝐴↑(𝑀 + 𝑘)) · 𝐴) = (((𝐴↑𝑀) · (𝐴↑𝑘)) · 𝐴)) |
37 | | nn0cn 9145 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
38 | | ax-1cn 7867 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
39 | | addass 7904 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1))) |
40 | 38, 39 | mp3an3 1321 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1))) |
41 | 25, 37, 40 | syl2an 287 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1))) |
42 | 41 | adantll 473 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1))) |
43 | 42 | oveq2d 5869 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = (𝐴↑(𝑀 + (𝑘 + 1)))) |
44 | | simpll 524 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → 𝐴 ∈ ℂ) |
45 | | nn0addcl 9170 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑀 + 𝑘) ∈
ℕ0) |
46 | 45 | adantll 473 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (𝑀 + 𝑘) ∈
ℕ0) |
47 | | expp1 10483 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 + 𝑘) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴)) |
48 | 44, 46, 47 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (𝐴↑((𝑀 + 𝑘) + 1)) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴)) |
49 | 43, 48 | eqtr3d 2205 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴↑(𝑀 + 𝑘)) · 𝐴)) |
50 | | expp1 10483 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
51 | 50 | adantlr 474 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
52 | 51 | oveq2d 5869 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → ((𝐴↑𝑀) · (𝐴↑(𝑘 + 1))) = ((𝐴↑𝑀) · ((𝐴↑𝑘) · 𝐴))) |
53 | 29 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (𝐴↑𝑀) ∈ ℂ) |
54 | | expcl 10494 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
55 | 54 | adantlr 474 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (𝐴↑𝑘) ∈ ℂ) |
56 | 53, 55, 44 | mulassd 7943 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (((𝐴↑𝑀) · (𝐴↑𝑘)) · 𝐴) = ((𝐴↑𝑀) · ((𝐴↑𝑘) · 𝐴))) |
57 | 52, 56 | eqtr4d 2206 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → ((𝐴↑𝑀) · (𝐴↑(𝑘 + 1))) = (((𝐴↑𝑀) · (𝐴↑𝑘)) · 𝐴)) |
58 | 49, 57 | eqeq12d 2185 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → ((𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴↑𝑀) · (𝐴↑(𝑘 + 1))) ↔ ((𝐴↑(𝑀 + 𝑘)) · 𝐴) = (((𝐴↑𝑀) · (𝐴↑𝑘)) · 𝐴))) |
59 | 36, 58 | syl5ibr 155 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → ((𝐴↑(𝑀 + 𝑘)) = ((𝐴↑𝑀) · (𝐴↑𝑘)) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴↑𝑀) · (𝐴↑(𝑘 + 1))))) |
60 | 59 | expcom 115 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ ((𝐴 ∈ ℂ
∧ 𝑀 ∈
ℕ0) → ((𝐴↑(𝑀 + 𝑘)) = ((𝐴↑𝑀) · (𝐴↑𝑘)) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴↑𝑀) · (𝐴↑(𝑘 + 1)))))) |
61 | 60 | a2d 26 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (((𝐴 ∈ ℂ
∧ 𝑀 ∈
ℕ0) → (𝐴↑(𝑀 + 𝑘)) = ((𝐴↑𝑀) · (𝐴↑𝑘))) → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + (𝑘 + 1))) = ((𝐴↑𝑀) · (𝐴↑(𝑘 + 1)))))) |
62 | 6, 12, 18, 24, 35, 61 | nn0ind 9326 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝐴 ∈ ℂ
∧ 𝑀 ∈
ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁)))) |
63 | 62 | expdcom 1435 |
. 2
⊢ (𝐴 ∈ ℂ → (𝑀 ∈ ℕ0
→ (𝑁 ∈
ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))))) |
64 | 63 | 3imp 1188 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) |