ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndi GIF version

Theorem nndi 6390
Description: Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nndi ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))

Proof of Theorem nndi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5790 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
21oveq2d 5798 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o 𝐶)))
3 oveq2 5790 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐶))
43oveq2d 5798 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
52, 4eqeq12d 2155 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))))
65imbi2d 229 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))))
7 oveq2 5790 . . . . . . 7 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
87oveq2d 5798 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o ∅)))
9 oveq2 5790 . . . . . . 7 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
109oveq2d 5798 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)))
118, 10eqeq12d 2155 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅))))
12 oveq2 5790 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
1312oveq2d 5798 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o 𝑦)))
14 oveq2 5790 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
1514oveq2d 5798 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))
1613, 15eqeq12d 2155 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))))
17 oveq2 5790 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1817oveq2d 5798 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o suc 𝑦)))
19 oveq2 5790 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
2019oveq2d 5798 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))
2118, 20eqeq12d 2155 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))
22 nna0 6378 . . . . . . . . 9 (𝐵 ∈ ω → (𝐵 +o ∅) = 𝐵)
2322adantl 275 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o ∅) = 𝐵)
2423oveq2d 5798 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o ∅)) = (𝐴 ·o 𝐵))
25 nnmcl 6385 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
26 nna0 6378 . . . . . . . 8 ((𝐴 ·o 𝐵) ∈ ω → ((𝐴 ·o 𝐵) +o ∅) = (𝐴 ·o 𝐵))
2725, 26syl 14 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) +o ∅) = (𝐴 ·o 𝐵))
2824, 27eqtr4d 2176 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o ∅))
29 nnm0 6379 . . . . . . . 8 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
3029adantr 274 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o ∅) = ∅)
3130oveq2d 5798 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)) = ((𝐴 ·o 𝐵) +o ∅))
3228, 31eqtr4d 2176 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)))
33 oveq1 5789 . . . . . . . . 9 ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴))
34 nnasuc 6380 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
35343adant1 1000 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3635oveq2d 5798 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o (𝐵 +o suc 𝑦)) = (𝐴 ·o suc (𝐵 +o 𝑦)))
37 nnacl 6384 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) ∈ ω)
38 nnmsuc 6381 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ (𝐵 +o 𝑦) ∈ ω) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
3937, 38sylan2 284 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝑦 ∈ ω)) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
40393impb 1178 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
4136, 40eqtrd 2173 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
42 nnmsuc 6381 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
43423adant2 1001 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4443oveq2d 5798 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
45 nnmcl 6385 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o 𝑦) ∈ ω)
46 nnaass 6389 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
4725, 46syl3an1 1250 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
4845, 47syl3an2 1251 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
49483exp 1181 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ∈ ω → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))
5049exp4b 365 . . . . . . . . . . . . . . 15 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ∈ ω → (𝑦 ∈ ω → (𝐴 ∈ ω → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))))
5150pm2.43a 51 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐴 ∈ ω → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))))
5251com4r 86 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))))
5352pm2.43i 49 . . . . . . . . . . . 12 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))
54533imp 1176 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
5544, 54eqtr4d 2176 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴))
5641, 55eqeq12d 2155 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) ↔ ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴)))
5733, 56syl5ibr 155 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))
58573exp 1181 . . . . . . 7 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))))
5958com3r 79 . . . . . 6 (𝑦 ∈ ω → (𝐴 ∈ ω → (𝐵 ∈ ω → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))))
6059impd 252 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))))
6111, 16, 21, 32, 60finds2 4523 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))
626, 61vtoclga 2755 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))))
6362expdcom 1419 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))))
64633imp 1176 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  c0 3368  suc csuc 4295  ωcom 4512  (class class class)co 5782   +o coa 6318   ·o comu 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325  df-omul 6326
This theorem is referenced by:  nnmass  6391  nndir  6394  distrpig  7165  addcmpblnq0  7275  nnanq0  7290  distrnq0  7291  addassnq0  7294
  Copyright terms: Public domain W3C validator