ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndi GIF version

Theorem nndi 6465
Description: Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nndi ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))

Proof of Theorem nndi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5861 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
21oveq2d 5869 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o 𝐶)))
3 oveq2 5861 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐶))
43oveq2d 5869 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
52, 4eqeq12d 2185 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))))
65imbi2d 229 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))))
7 oveq2 5861 . . . . . . 7 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
87oveq2d 5869 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o ∅)))
9 oveq2 5861 . . . . . . 7 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
109oveq2d 5869 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)))
118, 10eqeq12d 2185 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅))))
12 oveq2 5861 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
1312oveq2d 5869 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o 𝑦)))
14 oveq2 5861 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
1514oveq2d 5869 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))
1613, 15eqeq12d 2185 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))))
17 oveq2 5861 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1817oveq2d 5869 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o suc 𝑦)))
19 oveq2 5861 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
2019oveq2d 5869 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))
2118, 20eqeq12d 2185 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))
22 nna0 6453 . . . . . . . . 9 (𝐵 ∈ ω → (𝐵 +o ∅) = 𝐵)
2322adantl 275 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o ∅) = 𝐵)
2423oveq2d 5869 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o ∅)) = (𝐴 ·o 𝐵))
25 nnmcl 6460 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
26 nna0 6453 . . . . . . . 8 ((𝐴 ·o 𝐵) ∈ ω → ((𝐴 ·o 𝐵) +o ∅) = (𝐴 ·o 𝐵))
2725, 26syl 14 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) +o ∅) = (𝐴 ·o 𝐵))
2824, 27eqtr4d 2206 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o ∅))
29 nnm0 6454 . . . . . . . 8 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
3029adantr 274 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o ∅) = ∅)
3130oveq2d 5869 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)) = ((𝐴 ·o 𝐵) +o ∅))
3228, 31eqtr4d 2206 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)))
33 oveq1 5860 . . . . . . . . 9 ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴))
34 nnasuc 6455 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
35343adant1 1010 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3635oveq2d 5869 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o (𝐵 +o suc 𝑦)) = (𝐴 ·o suc (𝐵 +o 𝑦)))
37 nnacl 6459 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) ∈ ω)
38 nnmsuc 6456 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ (𝐵 +o 𝑦) ∈ ω) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
3937, 38sylan2 284 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝑦 ∈ ω)) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
40393impb 1194 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
4136, 40eqtrd 2203 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
42 nnmsuc 6456 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
43423adant2 1011 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4443oveq2d 5869 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
45 nnmcl 6460 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o 𝑦) ∈ ω)
46 nnaass 6464 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
4725, 46syl3an1 1266 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
4845, 47syl3an2 1267 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
49483exp 1197 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ∈ ω → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))
5049exp4b 365 . . . . . . . . . . . . . . 15 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ∈ ω → (𝑦 ∈ ω → (𝐴 ∈ ω → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))))
5150pm2.43a 51 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐴 ∈ ω → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))))
5251com4r 86 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))))
5352pm2.43i 49 . . . . . . . . . . . 12 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))
54533imp 1188 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
5544, 54eqtr4d 2206 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴))
5641, 55eqeq12d 2185 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) ↔ ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴)))
5733, 56syl5ibr 155 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))
58573exp 1197 . . . . . . 7 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))))
5958com3r 79 . . . . . 6 (𝑦 ∈ ω → (𝐴 ∈ ω → (𝐵 ∈ ω → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))))
6059impd 252 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))))
6111, 16, 21, 32, 60finds2 4585 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))
626, 61vtoclga 2796 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))))
6362expdcom 1435 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))))
64633imp 1188 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  c0 3414  suc csuc 4350  ωcom 4574  (class class class)co 5853   +o coa 6392   ·o comu 6393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400
This theorem is referenced by:  nnmass  6466  nndir  6469  distrpig  7295  addcmpblnq0  7405  nnanq0  7420  distrnq0  7421  addassnq0  7424
  Copyright terms: Public domain W3C validator