Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  expmul GIF version

Theorem expmul 10442
 Description: Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.)
Assertion
Ref Expression
expmul ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))

Proof of Theorem expmul
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5822 . . . . . . 7 (𝑗 = 0 → (𝑀 · 𝑗) = (𝑀 · 0))
21oveq2d 5830 . . . . . 6 (𝑗 = 0 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 0)))
3 oveq2 5822 . . . . . 6 (𝑗 = 0 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑0))
42, 3eqeq12d 2169 . . . . 5 (𝑗 = 0 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0)))
54imbi2d 229 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0))))
6 oveq2 5822 . . . . . . 7 (𝑗 = 𝑘 → (𝑀 · 𝑗) = (𝑀 · 𝑘))
76oveq2d 5830 . . . . . 6 (𝑗 = 𝑘 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 𝑘)))
8 oveq2 5822 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑𝑘))
97, 8eqeq12d 2169 . . . . 5 (𝑗 = 𝑘 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘)))
109imbi2d 229 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘))))
11 oveq2 5822 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀 · 𝑗) = (𝑀 · (𝑘 + 1)))
1211oveq2d 5830 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · (𝑘 + 1))))
13 oveq2 5822 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑(𝑘 + 1)))
1412, 13eqeq12d 2169 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1))))
1514imbi2d 229 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
16 oveq2 5822 . . . . . . 7 (𝑗 = 𝑁 → (𝑀 · 𝑗) = (𝑀 · 𝑁))
1716oveq2d 5830 . . . . . 6 (𝑗 = 𝑁 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 𝑁)))
18 oveq2 5822 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑀)↑𝑗) = ((𝐴𝑀)↑𝑁))
1917, 18eqeq12d 2169 . . . . 5 (𝑗 = 𝑁 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
2019imbi2d 229 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))))
21 nn0cn 9079 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
2221mul01d 8247 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 · 0) = 0)
2322oveq2d 5830 . . . . . 6 (𝑀 ∈ ℕ0 → (𝐴↑(𝑀 · 0)) = (𝐴↑0))
24 exp0 10401 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2523, 24sylan9eqr 2209 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = 1)
26 expcl 10415 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
27 exp0 10401 . . . . . 6 ((𝐴𝑀) ∈ ℂ → ((𝐴𝑀)↑0) = 1)
2826, 27syl 14 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀)↑0) = 1)
2925, 28eqtr4d 2190 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = ((𝐴𝑀)↑0))
30 oveq1 5821 . . . . . . 7 ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
31 nn0cn 9079 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
32 ax-1cn 7804 . . . . . . . . . . . . . 14 1 ∈ ℂ
33 adddi 7843 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + (𝑀 · 1)))
3432, 33mp3an3 1305 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + (𝑀 · 1)))
35 mulid1 7854 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℂ → (𝑀 · 1) = 𝑀)
3635adantr 274 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · 1) = 𝑀)
3736oveq2d 5830 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) + (𝑀 · 1)) = ((𝑀 · 𝑘) + 𝑀))
3834, 37eqtrd 2187 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
3921, 31, 38syl2an 287 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
4039adantll 468 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀))
4140oveq2d 5830 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = (𝐴↑((𝑀 · 𝑘) + 𝑀)))
42 simpll 519 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
43 nn0mulcl 9105 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 · 𝑘) ∈ ℕ0)
4443adantll 468 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 · 𝑘) ∈ ℕ0)
45 simplr 520 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
46 expadd 10439 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 · 𝑘) ∈ ℕ0𝑀 ∈ ℕ0) → (𝐴↑((𝑀 · 𝑘) + 𝑀)) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
4742, 44, 45, 46syl3anc 1217 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑((𝑀 · 𝑘) + 𝑀)) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
4841, 47eqtrd 2187 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)))
49 expp1 10404 . . . . . . . . 9 (((𝐴𝑀) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀)↑(𝑘 + 1)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
5026, 49sylan 281 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑀)↑(𝑘 + 1)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀)))
5148, 50eqeq12d 2169 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)) ↔ ((𝐴↑(𝑀 · 𝑘)) · (𝐴𝑀)) = (((𝐴𝑀)↑𝑘) · (𝐴𝑀))))
5230, 51syl5ibr 155 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1))))
5352expcom 115 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
5453a2d 26 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑘)) = ((𝐴𝑀)↑𝑘)) → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴𝑀)↑(𝑘 + 1)))))
555, 10, 15, 20, 29, 54nn0ind 9257 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
5655expdcom 1419 . 2 (𝐴 ∈ ℂ → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))))
57563imp 1176 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963   = wceq 1332   ∈ wcel 2125  (class class class)co 5814  ℂcc 7709  0cc0 7711  1c1 7712   + caddc 7714   · cmul 7716  ℕ0cn0 9069  ↑cexp 10396 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419  df-seqfrec 10323  df-exp 10397 This theorem is referenced by:  expmulzap  10443  expnass  10502  expmuld  10531
 Copyright terms: Public domain W3C validator