Step | Hyp | Ref
| Expression |
1 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑗 = 0 → (𝑀 · 𝑗) = (𝑀 · 0)) |
2 | 1 | oveq2d 5858 |
. . . . . 6
⊢ (𝑗 = 0 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 0))) |
3 | | oveq2 5850 |
. . . . . 6
⊢ (𝑗 = 0 → ((𝐴↑𝑀)↑𝑗) = ((𝐴↑𝑀)↑0)) |
4 | 2, 3 | eqeq12d 2180 |
. . . . 5
⊢ (𝑗 = 0 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴↑𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 0)) = ((𝐴↑𝑀)↑0))) |
5 | 4 | imbi2d 229 |
. . . 4
⊢ (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴↑𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 0)) = ((𝐴↑𝑀)↑0)))) |
6 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝑀 · 𝑗) = (𝑀 · 𝑘)) |
7 | 6 | oveq2d 5858 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 𝑘))) |
8 | | oveq2 5850 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝐴↑𝑀)↑𝑗) = ((𝐴↑𝑀)↑𝑘)) |
9 | 7, 8 | eqeq12d 2180 |
. . . . 5
⊢ (𝑗 = 𝑘 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴↑𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 𝑘)) = ((𝐴↑𝑀)↑𝑘))) |
10 | 9 | imbi2d 229 |
. . . 4
⊢ (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴↑𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑘)) = ((𝐴↑𝑀)↑𝑘)))) |
11 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → (𝑀 · 𝑗) = (𝑀 · (𝑘 + 1))) |
12 | 11 | oveq2d 5858 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · (𝑘 + 1)))) |
13 | | oveq2 5850 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → ((𝐴↑𝑀)↑𝑗) = ((𝐴↑𝑀)↑(𝑘 + 1))) |
14 | 12, 13 | eqeq12d 2180 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴↑𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴↑𝑀)↑(𝑘 + 1)))) |
15 | 14 | imbi2d 229 |
. . . 4
⊢ (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴↑𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴↑𝑀)↑(𝑘 + 1))))) |
16 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑗 = 𝑁 → (𝑀 · 𝑗) = (𝑀 · 𝑁)) |
17 | 16 | oveq2d 5858 |
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝐴↑(𝑀 · 𝑗)) = (𝐴↑(𝑀 · 𝑁))) |
18 | | oveq2 5850 |
. . . . . 6
⊢ (𝑗 = 𝑁 → ((𝐴↑𝑀)↑𝑗) = ((𝐴↑𝑀)↑𝑁)) |
19 | 17, 18 | eqeq12d 2180 |
. . . . 5
⊢ (𝑗 = 𝑁 → ((𝐴↑(𝑀 · 𝑗)) = ((𝐴↑𝑀)↑𝑗) ↔ (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
20 | 19 | imbi2d 229 |
. . . 4
⊢ (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑗)) = ((𝐴↑𝑀)↑𝑗)) ↔ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)))) |
21 | | nn0cn 9124 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℂ) |
22 | 21 | mul01d 8291 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ0
→ (𝑀 · 0) =
0) |
23 | 22 | oveq2d 5858 |
. . . . . 6
⊢ (𝑀 ∈ ℕ0
→ (𝐴↑(𝑀 · 0)) = (𝐴↑0)) |
24 | | exp0 10459 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
25 | 23, 24 | sylan9eqr 2221 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑(𝑀 · 0)) =
1) |
26 | | expcl 10473 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑𝑀) ∈
ℂ) |
27 | | exp0 10459 |
. . . . . 6
⊢ ((𝐴↑𝑀) ∈ ℂ → ((𝐴↑𝑀)↑0) = 1) |
28 | 26, 27 | syl 14 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ ((𝐴↑𝑀)↑0) = 1) |
29 | 25, 28 | eqtr4d 2201 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑(𝑀 · 0)) = ((𝐴↑𝑀)↑0)) |
30 | | oveq1 5849 |
. . . . . . 7
⊢ ((𝐴↑(𝑀 · 𝑘)) = ((𝐴↑𝑀)↑𝑘) → ((𝐴↑(𝑀 · 𝑘)) · (𝐴↑𝑀)) = (((𝐴↑𝑀)↑𝑘) · (𝐴↑𝑀))) |
31 | | nn0cn 9124 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
32 | | ax-1cn 7846 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
33 | | adddi 7885 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑀 ·
(𝑘 + 1)) = ((𝑀 · 𝑘) + (𝑀 · 1))) |
34 | 32, 33 | mp3an3 1316 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + (𝑀 · 1))) |
35 | | mulid1 7896 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℂ → (𝑀 · 1) = 𝑀) |
36 | 35 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · 1) = 𝑀) |
37 | 36 | oveq2d 5858 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) + (𝑀 · 1)) = ((𝑀 · 𝑘) + 𝑀)) |
38 | 34, 37 | eqtrd 2198 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀)) |
39 | 21, 31, 38 | syl2an 287 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀)) |
40 | 39 | adantll 468 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (𝑀 · (𝑘 + 1)) = ((𝑀 · 𝑘) + 𝑀)) |
41 | 40 | oveq2d 5858 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = (𝐴↑((𝑀 · 𝑘) + 𝑀))) |
42 | | simpll 519 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → 𝐴 ∈ ℂ) |
43 | | nn0mulcl 9150 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑀 · 𝑘) ∈
ℕ0) |
44 | 43 | adantll 468 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (𝑀 · 𝑘) ∈
ℕ0) |
45 | | simplr 520 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → 𝑀 ∈
ℕ0) |
46 | | expadd 10497 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ (𝑀 · 𝑘) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑((𝑀 · 𝑘) + 𝑀)) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴↑𝑀))) |
47 | 42, 44, 45, 46 | syl3anc 1228 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (𝐴↑((𝑀 · 𝑘) + 𝑀)) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴↑𝑀))) |
48 | 41, 47 | eqtrd 2198 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴↑(𝑀 · 𝑘)) · (𝐴↑𝑀))) |
49 | | expp1 10462 |
. . . . . . . . 9
⊢ (((𝐴↑𝑀) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑀)↑(𝑘 + 1)) = (((𝐴↑𝑀)↑𝑘) · (𝐴↑𝑀))) |
50 | 26, 49 | sylan 281 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → ((𝐴↑𝑀)↑(𝑘 + 1)) = (((𝐴↑𝑀)↑𝑘) · (𝐴↑𝑀))) |
51 | 48, 50 | eqeq12d 2180 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → ((𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴↑𝑀)↑(𝑘 + 1)) ↔ ((𝐴↑(𝑀 · 𝑘)) · (𝐴↑𝑀)) = (((𝐴↑𝑀)↑𝑘) · (𝐴↑𝑀)))) |
52 | 30, 51 | syl5ibr 155 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
∧ 𝑘 ∈
ℕ0) → ((𝐴↑(𝑀 · 𝑘)) = ((𝐴↑𝑀)↑𝑘) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴↑𝑀)↑(𝑘 + 1)))) |
53 | 52 | expcom 115 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ ((𝐴 ∈ ℂ
∧ 𝑀 ∈
ℕ0) → ((𝐴↑(𝑀 · 𝑘)) = ((𝐴↑𝑀)↑𝑘) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴↑𝑀)↑(𝑘 + 1))))) |
54 | 53 | a2d 26 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (((𝐴 ∈ ℂ
∧ 𝑀 ∈
ℕ0) → (𝐴↑(𝑀 · 𝑘)) = ((𝐴↑𝑀)↑𝑘)) → ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 · (𝑘 + 1))) = ((𝐴↑𝑀)↑(𝑘 + 1))))) |
55 | 5, 10, 15, 20, 29, 54 | nn0ind 9305 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝐴 ∈ ℂ
∧ 𝑀 ∈
ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
56 | 55 | expdcom 1430 |
. 2
⊢ (𝐴 ∈ ℂ → (𝑀 ∈ ℕ0
→ (𝑁 ∈
ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)))) |
57 | 56 | 3imp 1183 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |