Step | Hyp | Ref
| Expression |
1 | | oveq2 5850 |
. . . . . 6
⊢ (𝑥 = 𝐶 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o 𝐶)) |
2 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶)) |
3 | 2 | oveq2d 5858 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o 𝐶))) |
4 | 1, 3 | eqeq12d 2180 |
. . . . 5
⊢ (𝑥 = 𝐶 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))) |
5 | 4 | imbi2d 229 |
. . . 4
⊢ (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))))) |
6 | | oveq2 5850 |
. . . . . 6
⊢ (𝑥 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o
∅)) |
7 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o
∅)) |
8 | 7 | oveq2d 5858 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o
∅))) |
9 | 6, 8 | eqeq12d 2180 |
. . . . 5
⊢ (𝑥 = ∅ → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o ∅) = (𝐴 ·o (𝐵 ·o
∅)))) |
10 | | oveq2 5850 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o 𝑦)) |
11 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦)) |
12 | 11 | oveq2d 5858 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o 𝑦))) |
13 | 10, 12 | eqeq12d 2180 |
. . . . 5
⊢ (𝑥 = 𝑦 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)))) |
14 | | oveq2 5850 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o suc 𝑦)) |
15 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦)) |
16 | 15 | oveq2d 5858 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o suc 𝑦))) |
17 | 14, 16 | eqeq12d 2180 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)))) |
18 | | nnmcl 6449 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈
ω) |
19 | | nnm0 6443 |
. . . . . . 7
⊢ ((𝐴 ·o 𝐵) ∈ ω → ((𝐴 ·o 𝐵) ·o ∅)
= ∅) |
20 | 18, 19 | syl 14 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) ·o ∅)
= ∅) |
21 | | nnm0 6443 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → (𝐵 ·o ∅) =
∅) |
22 | 21 | oveq2d 5858 |
. . . . . . 7
⊢ (𝐵 ∈ ω → (𝐴 ·o (𝐵 ·o ∅))
= (𝐴 ·o
∅)) |
23 | | nnm0 6443 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) =
∅) |
24 | 22, 23 | sylan9eqr 2221 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 ·o ∅))
= ∅) |
25 | 20, 24 | eqtr4d 2201 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) ·o ∅)
= (𝐴 ·o
(𝐵 ·o
∅))) |
26 | | oveq1 5849 |
. . . . . . . . 9
⊢ (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))) |
27 | | nnmsuc 6445 |
. . . . . . . . . . . 12
⊢ (((𝐴 ·o 𝐵) ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵))) |
28 | 18, 27 | sylan 281 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵))) |
29 | 28 | 3impa 1184 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵))) |
30 | | nnmsuc 6445 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵)) |
31 | 30 | 3adant1 1005 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵)) |
32 | 31 | oveq2d 5858 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o (𝐵 ·o suc 𝑦)) = (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵))) |
33 | | nnmcl 6449 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o 𝑦) ∈
ω) |
34 | | nndi 6454 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ω ∧ (𝐵 ·o 𝑦) ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))) |
35 | 33, 34 | syl3an2 1262 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐵 ∈ ω) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))) |
36 | 35 | 3exp 1192 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ∈ ω → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))) |
37 | 36 | expd 256 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐵 ∈ ω → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))))) |
38 | 37 | com34 83 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))))) |
39 | 38 | pm2.43d 50 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))) |
40 | 39 | 3imp 1183 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))) |
41 | 32, 40 | eqtrd 2198 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o (𝐵 ·o suc 𝑦)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))) |
42 | 29, 41 | eqeq12d 2180 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)) ↔ (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))) |
43 | 26, 42 | syl5ibr 155 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)))) |
44 | 43 | 3exp 1192 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)))))) |
45 | 44 | com3r 79 |
. . . . . 6
⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → (𝐵 ∈ ω → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)))))) |
46 | 45 | impd 252 |
. . . . 5
⊢ (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))) |
47 | 9, 13, 17, 25, 46 | finds2 4578 |
. . . 4
⊢ (𝑥 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))) |
48 | 5, 47 | vtoclga 2792 |
. . 3
⊢ (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))) |
49 | 48 | expdcom 1430 |
. 2
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))))) |
50 | 49 | 3imp 1183 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))) |