ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmass GIF version

Theorem nnmass 6591
Description: Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmass ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))

Proof of Theorem nnmass
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5970 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o 𝐶))
2 oveq2 5970 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
32oveq2d 5978 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o 𝐶)))
41, 3eqeq12d 2221 . . . . 5 (𝑥 = 𝐶 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))))
54imbi2d 230 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))))
6 oveq2 5970 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o ∅))
7 oveq2 5970 . . . . . . 7 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
87oveq2d 5978 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o ∅)))
96, 8eqeq12d 2221 . . . . 5 (𝑥 = ∅ → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o ∅) = (𝐴 ·o (𝐵 ·o ∅))))
10 oveq2 5970 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o 𝑦))
11 oveq2 5970 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
1211oveq2d 5978 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o 𝑦)))
1310, 12eqeq12d 2221 . . . . 5 (𝑥 = 𝑦 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))))
14 oveq2 5970 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o suc 𝑦))
15 oveq2 5970 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
1615oveq2d 5978 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o suc 𝑦)))
1714, 16eqeq12d 2221 . . . . 5 (𝑥 = suc 𝑦 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))
18 nnmcl 6585 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
19 nnm0 6579 . . . . . . 7 ((𝐴 ·o 𝐵) ∈ ω → ((𝐴 ·o 𝐵) ·o ∅) = ∅)
2018, 19syl 14 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) ·o ∅) = ∅)
21 nnm0 6579 . . . . . . . 8 (𝐵 ∈ ω → (𝐵 ·o ∅) = ∅)
2221oveq2d 5978 . . . . . . 7 (𝐵 ∈ ω → (𝐴 ·o (𝐵 ·o ∅)) = (𝐴 ·o ∅))
23 nnm0 6579 . . . . . . 7 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
2422, 23sylan9eqr 2261 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o (𝐵 ·o ∅)) = ∅)
2520, 24eqtr4d 2242 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) ·o ∅) = (𝐴 ·o (𝐵 ·o ∅)))
26 oveq1 5969 . . . . . . . . 9 (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
27 nnmsuc 6581 . . . . . . . . . . . 12 (((𝐴 ·o 𝐵) ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)))
2818, 27sylan 283 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)))
29283impa 1197 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)))
30 nnmsuc 6581 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
31303adant1 1018 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3231oveq2d 5978 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o (𝐵 ·o suc 𝑦)) = (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)))
33 nnmcl 6585 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o 𝑦) ∈ ω)
34 nndi 6590 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ω ∧ (𝐵 ·o 𝑦) ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
3533, 34syl3an2 1284 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐵 ∈ ω) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
36353exp 1205 . . . . . . . . . . . . . . 15 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ∈ ω → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))))
3736expd 258 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐵 ∈ ω → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))))
3837com34 83 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))))
3938pm2.43d 50 . . . . . . . . . . . 12 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))))
40393imp 1196 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
4132, 40eqtrd 2239 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o (𝐵 ·o suc 𝑦)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
4229, 41eqeq12d 2221 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)) ↔ (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))
4326, 42imbitrrid 156 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))
44433exp 1205 . . . . . . 7 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))))
4544com3r 79 . . . . . 6 (𝑦 ∈ ω → (𝐴 ∈ ω → (𝐵 ∈ ω → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))))
4645impd 254 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)))))
479, 13, 17, 25, 46finds2 4662 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
485, 47vtoclga 2841 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))))
4948expdcom 1463 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))))
50493imp 1196 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  c0 3464  suc csuc 4425  ωcom 4651  (class class class)co 5962   +o coa 6517   ·o comu 6518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-oadd 6524  df-omul 6525
This theorem is referenced by:  mulasspig  7475  enq0tr  7577  addcmpblnq0  7586  mulcmpblnq0  7587  mulcanenq0ec  7588  distrnq0  7602  addassnq0  7605
  Copyright terms: Public domain W3C validator