| Step | Hyp | Ref
 | Expression | 
| 1 |   | elxp 4680 | 
. 2
⊢ (𝐴 ∈ ((V × V) ×
V) ↔ ∃𝑤∃𝑧(𝐴 = 〈𝑤, 𝑧〉 ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V))) | 
| 2 |   | anass 401 | 
. . . . 5
⊢ (((𝐴 = 〈𝑤, 𝑧〉 ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V) ↔ (𝐴 = 〈𝑤, 𝑧〉 ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V))) | 
| 3 |   | 19.42vv 1926 | 
. . . . . 6
⊢
(∃𝑥∃𝑦(𝐴 = 〈𝑤, 𝑧〉 ∧ 𝑤 = 〈𝑥, 𝑦〉) ↔ (𝐴 = 〈𝑤, 𝑧〉 ∧ ∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉)) | 
| 4 |   | ancom 266 | 
. . . . . . 7
⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉) ↔ (𝐴 = 〈𝑤, 𝑧〉 ∧ 𝑤 = 〈𝑥, 𝑦〉)) | 
| 5 | 4 | 2exbii 1620 | 
. . . . . 6
⊢
(∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑤, 𝑧〉 ∧ 𝑤 = 〈𝑥, 𝑦〉)) | 
| 6 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑧 ∈ V | 
| 7 | 6 | biantru 302 | 
. . . . . . 7
⊢ ((𝐴 = 〈𝑤, 𝑧〉 ∧ 𝑤 ∈ (V × V)) ↔ ((𝐴 = 〈𝑤, 𝑧〉 ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V)) | 
| 8 |   | elvv 4725 | 
. . . . . . . 8
⊢ (𝑤 ∈ (V × V) ↔
∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉) | 
| 9 | 8 | anbi2i 457 | 
. . . . . . 7
⊢ ((𝐴 = 〈𝑤, 𝑧〉 ∧ 𝑤 ∈ (V × V)) ↔ (𝐴 = 〈𝑤, 𝑧〉 ∧ ∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉)) | 
| 10 | 7, 9 | bitr3i 186 | 
. . . . . 6
⊢ (((𝐴 = 〈𝑤, 𝑧〉 ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V) ↔ (𝐴 = 〈𝑤, 𝑧〉 ∧ ∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉)) | 
| 11 | 3, 5, 10 | 3bitr4ri 213 | 
. . . . 5
⊢ (((𝐴 = 〈𝑤, 𝑧〉 ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉)) | 
| 12 | 2, 11 | bitr3i 186 | 
. . . 4
⊢ ((𝐴 = 〈𝑤, 𝑧〉 ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉)) | 
| 13 | 12 | 2exbii 1620 | 
. . 3
⊢
(∃𝑤∃𝑧(𝐴 = 〈𝑤, 𝑧〉 ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑤∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉)) | 
| 14 |   | exrot4 1705 | 
. . . 4
⊢
(∃𝑥∃𝑦∃𝑤∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉) ↔ ∃𝑤∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉)) | 
| 15 |   | excom 1678 | 
. . . . . 6
⊢
(∃𝑤∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉) ↔ ∃𝑧∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉)) | 
| 16 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑥 ∈ V | 
| 17 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑦 ∈ V | 
| 18 | 16, 17 | opex 4262 | 
. . . . . . . 8
⊢
〈𝑥, 𝑦〉 ∈ V | 
| 19 |   | opeq1 3808 | 
. . . . . . . . 9
⊢ (𝑤 = 〈𝑥, 𝑦〉 → 〈𝑤, 𝑧〉 = 〈〈𝑥, 𝑦〉, 𝑧〉) | 
| 20 | 19 | eqeq2d 2208 | 
. . . . . . . 8
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐴 = 〈𝑤, 𝑧〉 ↔ 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉)) | 
| 21 | 18, 20 | ceqsexv 2802 | 
. . . . . . 7
⊢
(∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉) ↔ 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | 
| 22 | 21 | exbii 1619 | 
. . . . . 6
⊢
(∃𝑧∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉) ↔ ∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | 
| 23 | 15, 22 | bitri 184 | 
. . . . 5
⊢
(∃𝑤∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉) ↔ ∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | 
| 24 | 23 | 2exbii 1620 | 
. . . 4
⊢
(∃𝑥∃𝑦∃𝑤∃𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉) ↔ ∃𝑥∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | 
| 25 | 14, 24 | bitr3i 186 | 
. . 3
⊢
(∃𝑤∃𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝐴 = 〈𝑤, 𝑧〉) ↔ ∃𝑥∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | 
| 26 | 13, 25 | bitri 184 | 
. 2
⊢
(∃𝑤∃𝑧(𝐴 = 〈𝑤, 𝑧〉 ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑥∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) | 
| 27 | 1, 26 | bitri 184 | 
1
⊢ (𝐴 ∈ ((V × V) ×
V) ↔ ∃𝑥∃𝑦∃𝑧 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |