ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvvv GIF version

Theorem elvvv 4686
Description: Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
elvvv (𝐴 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem elvvv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elxp 4640 . 2 (𝐴 ∈ ((V × V) × V) ↔ ∃𝑤𝑧(𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)))
2 anass 401 . . . . 5 (((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)))
3 19.42vv 1911 . . . . . 6 (∃𝑥𝑦(𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩))
4 ancom 266 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
542exbii 1606 . . . . . 6 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
6 vex 2740 . . . . . . . 8 𝑧 ∈ V
76biantru 302 . . . . . . 7 ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ↔ ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V))
8 elvv 4685 . . . . . . . 8 (𝑤 ∈ (V × V) ↔ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
98anbi2i 457 . . . . . . 7 ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩))
107, 9bitr3i 186 . . . . . 6 (((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩))
113, 5, 103bitr4ri 213 . . . . 5 (((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
122, 11bitr3i 186 . . . 4 ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
13122exbii 1606 . . 3 (∃𝑤𝑧(𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑤𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
14 exrot4 1691 . . . 4 (∃𝑥𝑦𝑤𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑤𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
15 excom 1664 . . . . . 6 (∃𝑤𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑧𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
16 vex 2740 . . . . . . . . 9 𝑥 ∈ V
17 vex 2740 . . . . . . . . 9 𝑦 ∈ V
1816, 17opex 4226 . . . . . . . 8 𝑥, 𝑦⟩ ∈ V
19 opeq1 3776 . . . . . . . . 9 (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
2019eqeq2d 2189 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑤, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
2118, 20ceqsexv 2776 . . . . . . 7 (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
2221exbii 1605 . . . . . 6 (∃𝑧𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
2315, 22bitri 184 . . . . 5 (∃𝑤𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
24232exbii 1606 . . . 4 (∃𝑥𝑦𝑤𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
2514, 24bitr3i 186 . . 3 (∃𝑤𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
2613, 25bitri 184 . 2 (∃𝑤𝑧(𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
271, 26bitri 184 1 (𝐴 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  Vcvv 2737  cop 3594   × cxp 4621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-opab 4062  df-xp 4629
This theorem is referenced by:  ssrelrel  4723  dftpos3  6257
  Copyright terms: Public domain W3C validator