ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1rn GIF version

Theorem f1rn 5394
Description: The range of a one-to-one mapping. (Contributed by BJ, 6-Jul-2022.)
Assertion
Ref Expression
f1rn (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)

Proof of Theorem f1rn
StepHypRef Expression
1 f1f 5393 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 frn 5346 . 2 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
31, 2syl 14 1 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3116  ran crn 4605  wf 5184  1-1wf1 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-f 5192  df-f1 5193
This theorem is referenced by:  fun11iun  5453  f1dmex  6084  f1finf1o  6912  caserel  7052  djudom  7058  exmidfodomrlemim  7157
  Copyright terms: Public domain W3C validator