Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1dmex | GIF version |
Description: If the codomain of a one-to-one function exists, so does its domain. This can be thought of as a form of the Axiom of Replacement. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
f1dmex | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1rn 5373 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | ssexg 4103 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → ran 𝐹 ∈ V) | |
3 | 1, 2 | sylan 281 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → ran 𝐹 ∈ V) |
4 | 3 | ex 114 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐵 ∈ 𝐶 → ran 𝐹 ∈ V)) |
5 | f1cnv 5435 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
6 | f1ofo 5418 | . . . . 5 ⊢ (◡𝐹:ran 𝐹–1-1-onto→𝐴 → ◡𝐹:ran 𝐹–onto→𝐴) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–onto→𝐴) |
8 | fornex 6057 | . . . 4 ⊢ (ran 𝐹 ∈ V → (◡𝐹:ran 𝐹–onto→𝐴 → 𝐴 ∈ V)) | |
9 | 7, 8 | syl5com 29 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (ran 𝐹 ∈ V → 𝐴 ∈ V)) |
10 | 4, 9 | syld 45 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐵 ∈ 𝐶 → 𝐴 ∈ V)) |
11 | 10 | imp 123 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 Vcvv 2712 ⊆ wss 3102 ◡ccnv 4582 ran crn 4584 –1-1→wf1 5164 –onto→wfo 5165 –1-1-onto→wf1o 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 |
This theorem is referenced by: f1domg 6696 |
Copyright terms: Public domain | W3C validator |