Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1dmex | GIF version |
Description: If the codomain of a one-to-one function exists, so does its domain. This can be thought of as a form of the Axiom of Replacement. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
f1dmex | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1rn 5394 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | ssexg 4121 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → ran 𝐹 ∈ V) | |
3 | 1, 2 | sylan 281 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → ran 𝐹 ∈ V) |
4 | 3 | ex 114 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐵 ∈ 𝐶 → ran 𝐹 ∈ V)) |
5 | f1cnv 5456 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
6 | f1ofo 5439 | . . . . 5 ⊢ (◡𝐹:ran 𝐹–1-1-onto→𝐴 → ◡𝐹:ran 𝐹–onto→𝐴) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–onto→𝐴) |
8 | fornex 6083 | . . . 4 ⊢ (ran 𝐹 ∈ V → (◡𝐹:ran 𝐹–onto→𝐴 → 𝐴 ∈ V)) | |
9 | 7, 8 | syl5com 29 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (ran 𝐹 ∈ V → 𝐴 ∈ V)) |
10 | 4, 9 | syld 45 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐵 ∈ 𝐶 → 𝐴 ∈ V)) |
11 | 10 | imp 123 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 ◡ccnv 4603 ran crn 4605 –1-1→wf1 5185 –onto→wfo 5186 –1-1-onto→wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: f1domg 6724 |
Copyright terms: Public domain | W3C validator |