| Step | Hyp | Ref
| Expression |
| 1 | | brdomi 6808 |
. . . . 5
⊢ (𝑦 ≼ 𝑥 → ∃𝑔 𝑔:𝑦–1-1→𝑥) |
| 2 | 1 | ad2antll 491 |
. . . 4
⊢
((EXMID ∧ (∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥)) → ∃𝑔 𝑔:𝑦–1-1→𝑥) |
| 3 | | df-f1 5263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔:𝑦–1-1→𝑥 ↔ (𝑔:𝑦⟶𝑥 ∧ Fun ◡𝑔)) |
| 4 | 3 | simprbi 275 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔:𝑦–1-1→𝑥 → Fun ◡𝑔) |
| 5 | | vex 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑧 ∈ V |
| 6 | 5 | fconst 5453 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∖ ran 𝑔) × {𝑧}):(𝑥 ∖ ran 𝑔)⟶{𝑧} |
| 7 | | ffun 5410 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∖ ran 𝑔) × {𝑧}):(𝑥 ∖ ran 𝑔)⟶{𝑧} → Fun ((𝑥 ∖ ran 𝑔) × {𝑧})) |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ Fun
((𝑥 ∖ ran 𝑔) × {𝑧}) |
| 9 | 4, 8 | jctir 313 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:𝑦–1-1→𝑥 → (Fun ◡𝑔 ∧ Fun ((𝑥 ∖ ran 𝑔) × {𝑧}))) |
| 10 | | df-rn 4674 |
. . . . . . . . . . . . . . . . . 18
⊢ ran 𝑔 = dom ◡𝑔 |
| 11 | 10 | eqcomi 2200 |
. . . . . . . . . . . . . . . . 17
⊢ dom ◡𝑔 = ran 𝑔 |
| 12 | 5 | snm 3742 |
. . . . . . . . . . . . . . . . . 18
⊢
∃𝑤 𝑤 ∈ {𝑧} |
| 13 | | dmxpm 4886 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑤 𝑤 ∈ {𝑧} → dom ((𝑥 ∖ ran 𝑔) × {𝑧}) = (𝑥 ∖ ran 𝑔)) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ dom
((𝑥 ∖ ran 𝑔) × {𝑧}) = (𝑥 ∖ ran 𝑔) |
| 15 | 11, 14 | ineq12i 3362 |
. . . . . . . . . . . . . . . 16
⊢ (dom
◡𝑔 ∩ dom ((𝑥 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∩ (𝑥 ∖ ran 𝑔)) |
| 16 | | disjdif 3523 |
. . . . . . . . . . . . . . . 16
⊢ (ran
𝑔 ∩ (𝑥 ∖ ran 𝑔)) = ∅ |
| 17 | 15, 16 | eqtri 2217 |
. . . . . . . . . . . . . . 15
⊢ (dom
◡𝑔 ∩ dom ((𝑥 ∖ ran 𝑔) × {𝑧})) = ∅ |
| 18 | | funun 5302 |
. . . . . . . . . . . . . . 15
⊢ (((Fun
◡𝑔 ∧ Fun ((𝑥 ∖ ran 𝑔) × {𝑧})) ∧ (dom ◡𝑔 ∩ dom ((𝑥 ∖ ran 𝑔) × {𝑧})) = ∅) → Fun (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧}))) |
| 19 | 9, 17, 18 | sylancl 413 |
. . . . . . . . . . . . . 14
⊢ (𝑔:𝑦–1-1→𝑥 → Fun (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧}))) |
| 20 | 19 | adantl 277 |
. . . . . . . . . . . . 13
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ 𝑔:𝑦–1-1→𝑥) → Fun (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧}))) |
| 21 | | dmun 4873 |
. . . . . . . . . . . . . . 15
⊢ dom
(◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = (dom ◡𝑔 ∪ dom ((𝑥 ∖ ran 𝑔) × {𝑧})) |
| 22 | 10 | uneq1i 3313 |
. . . . . . . . . . . . . . 15
⊢ (ran
𝑔 ∪ dom ((𝑥 ∖ ran 𝑔) × {𝑧})) = (dom ◡𝑔 ∪ dom ((𝑥 ∖ ran 𝑔) × {𝑧})) |
| 23 | 14 | uneq2i 3314 |
. . . . . . . . . . . . . . 15
⊢ (ran
𝑔 ∪ dom ((𝑥 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝑥 ∖ ran 𝑔)) |
| 24 | 21, 22, 23 | 3eqtr2i 2223 |
. . . . . . . . . . . . . 14
⊢ dom
(◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝑥 ∖ ran 𝑔)) |
| 25 | | f1rn 5464 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔:𝑦–1-1→𝑥 → ran 𝑔 ⊆ 𝑥) |
| 26 | 25 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ 𝑔:𝑦–1-1→𝑥) → ran 𝑔 ⊆ 𝑥) |
| 27 | | exmidexmid 4229 |
. . . . . . . . . . . . . . . . 17
⊢
(EXMID → DECID 𝑢 ∈ ran 𝑔) |
| 28 | 27 | ralrimivw 2571 |
. . . . . . . . . . . . . . . 16
⊢
(EXMID → ∀𝑢 ∈ 𝑥 DECID 𝑢 ∈ ran 𝑔) |
| 29 | 28 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ 𝑔:𝑦–1-1→𝑥) → ∀𝑢 ∈ 𝑥 DECID 𝑢 ∈ ran 𝑔) |
| 30 | | undifdcss 6984 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (ran 𝑔 ∪ (𝑥 ∖ ran 𝑔)) ↔ (ran 𝑔 ⊆ 𝑥 ∧ ∀𝑢 ∈ 𝑥 DECID 𝑢 ∈ ran 𝑔)) |
| 31 | 26, 29, 30 | sylanbrc 417 |
. . . . . . . . . . . . . 14
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ 𝑔:𝑦–1-1→𝑥) → 𝑥 = (ran 𝑔 ∪ (𝑥 ∖ ran 𝑔))) |
| 32 | 24, 31 | eqtr4id 2248 |
. . . . . . . . . . . . 13
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ 𝑔:𝑦–1-1→𝑥) → dom (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑥) |
| 33 | | df-fn 5261 |
. . . . . . . . . . . . 13
⊢ ((◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) Fn 𝑥 ↔ (Fun (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) ∧ dom (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑥)) |
| 34 | 20, 32, 33 | sylanbrc 417 |
. . . . . . . . . . . 12
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ 𝑔:𝑦–1-1→𝑥) → (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) Fn 𝑥) |
| 35 | | rnun 5078 |
. . . . . . . . . . . . 13
⊢ ran
(◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = (ran ◡𝑔 ∪ ran ((𝑥 ∖ ran 𝑔) × {𝑧})) |
| 36 | | dfdm4 4858 |
. . . . . . . . . . . . . . . 16
⊢ dom 𝑔 = ran ◡𝑔 |
| 37 | | f1dm 5468 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔:𝑦–1-1→𝑥 → dom 𝑔 = 𝑦) |
| 38 | 36, 37 | eqtr3id 2243 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:𝑦–1-1→𝑥 → ran ◡𝑔 = 𝑦) |
| 39 | 38 | uneq1d 3316 |
. . . . . . . . . . . . . 14
⊢ (𝑔:𝑦–1-1→𝑥 → (ran ◡𝑔 ∪ ran ((𝑥 ∖ ran 𝑔) × {𝑧})) = (𝑦 ∪ ran ((𝑥 ∖ ran 𝑔) × {𝑧}))) |
| 40 | | exmidexmid 4229 |
. . . . . . . . . . . . . . . . . 18
⊢
(EXMID → DECID ∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔)) |
| 41 | | exmiddc 837 |
. . . . . . . . . . . . . . . . . 18
⊢
(DECID ∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) → (∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ∨ ¬ ∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔))) |
| 42 | 40, 41 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢
(EXMID → (∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ∨ ¬ ∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔))) |
| 43 | | rnxpm 5099 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) = {𝑧}) |
| 44 | 43 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ∧ 𝑧 ∈ 𝑦) → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) = {𝑧}) |
| 45 | | snssi 3766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝑦 → {𝑧} ⊆ 𝑦) |
| 46 | 45 | adantl 277 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ∧ 𝑧 ∈ 𝑦) → {𝑧} ⊆ 𝑦) |
| 47 | 44, 46 | eqsstrd 3219 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ∧ 𝑧 ∈ 𝑦) → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦) |
| 48 | 47 | ex 115 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) → (𝑧 ∈ 𝑦 → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦)) |
| 49 | | notm0 3471 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ↔ (𝑥 ∖ ran 𝑔) = ∅) |
| 50 | | xpeq1 4677 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∖ ran 𝑔) = ∅ → ((𝑥 ∖ ran 𝑔) × {𝑧}) = (∅ × {𝑧})) |
| 51 | | 0xp 4743 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∅
× {𝑧}) =
∅ |
| 52 | 50, 51 | eqtrdi 2245 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∖ ran 𝑔) = ∅ → ((𝑥 ∖ ran 𝑔) × {𝑧}) = ∅) |
| 53 | 52 | rneqd 4895 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∖ ran 𝑔) = ∅ → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) = ran ∅) |
| 54 | | rn0 4922 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ran
∅ = ∅ |
| 55 | 53, 54 | eqtrdi 2245 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∖ ran 𝑔) = ∅ → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) = ∅) |
| 56 | | 0ss 3489 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∅
⊆ 𝑦 |
| 57 | 55, 56 | eqsstrdi 3235 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∖ ran 𝑔) = ∅ → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦) |
| 58 | 57 | a1d 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∖ ran 𝑔) = ∅ → (𝑧 ∈ 𝑦 → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦)) |
| 59 | 49, 58 | sylbi 121 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) → (𝑧 ∈ 𝑦 → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦)) |
| 60 | 48, 59 | jaoi 717 |
. . . . . . . . . . . . . . . . 17
⊢
((∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ∨ ¬ ∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔)) → (𝑧 ∈ 𝑦 → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦)) |
| 61 | 42, 60 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢
(EXMID → (𝑧 ∈ 𝑦 → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦)) |
| 62 | 61 | imp 124 |
. . . . . . . . . . . . . . 15
⊢
((EXMID ∧ 𝑧 ∈ 𝑦) → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦) |
| 63 | | ssequn2 3336 |
. . . . . . . . . . . . . . 15
⊢ (ran
((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦 ↔ (𝑦 ∪ ran ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑦) |
| 64 | 62, 63 | sylib 122 |
. . . . . . . . . . . . . 14
⊢
((EXMID ∧ 𝑧 ∈ 𝑦) → (𝑦 ∪ ran ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑦) |
| 65 | 39, 64 | sylan9eqr 2251 |
. . . . . . . . . . . . 13
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ 𝑔:𝑦–1-1→𝑥) → (ran ◡𝑔 ∪ ran ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑦) |
| 66 | 35, 65 | eqtrid 2241 |
. . . . . . . . . . . 12
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ 𝑔:𝑦–1-1→𝑥) → ran (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑦) |
| 67 | | df-fo 5264 |
. . . . . . . . . . . 12
⊢ ((◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})):𝑥–onto→𝑦 ↔ ((◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) Fn 𝑥 ∧ ran (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑦)) |
| 68 | 34, 66, 67 | sylanbrc 417 |
. . . . . . . . . . 11
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ 𝑔:𝑦–1-1→𝑥) → (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})):𝑥–onto→𝑦) |
| 69 | | vex 2766 |
. . . . . . . . . . . . . 14
⊢ 𝑔 ∈ V |
| 70 | 69 | cnvex 5208 |
. . . . . . . . . . . . 13
⊢ ◡𝑔 ∈ V |
| 71 | | vex 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
| 72 | | difexg 4174 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ V → (𝑥 ∖ ran 𝑔) ∈ V) |
| 73 | 71, 72 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∖ ran 𝑔) ∈ V |
| 74 | 5 | snex 4218 |
. . . . . . . . . . . . . 14
⊢ {𝑧} ∈ V |
| 75 | 73, 74 | xpex 4778 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∖ ran 𝑔) × {𝑧}) ∈ V |
| 76 | 70, 75 | unex 4476 |
. . . . . . . . . . . 12
⊢ (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) ∈ V |
| 77 | | foeq1 5476 |
. . . . . . . . . . . 12
⊢ (𝑓 = (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) → (𝑓:𝑥–onto→𝑦 ↔ (◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})):𝑥–onto→𝑦)) |
| 78 | 76, 77 | spcev 2859 |
. . . . . . . . . . 11
⊢ ((◡𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})):𝑥–onto→𝑦 → ∃𝑓 𝑓:𝑥–onto→𝑦) |
| 79 | 68, 78 | syl 14 |
. . . . . . . . . 10
⊢
(((EXMID ∧ 𝑧 ∈ 𝑦) ∧ 𝑔:𝑦–1-1→𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦) |
| 80 | 79 | an32s 568 |
. . . . . . . . 9
⊢
(((EXMID ∧ 𝑔:𝑦–1-1→𝑥) ∧ 𝑧 ∈ 𝑦) → ∃𝑓 𝑓:𝑥–onto→𝑦) |
| 81 | 80 | ex 115 |
. . . . . . . 8
⊢
((EXMID ∧ 𝑔:𝑦–1-1→𝑥) → (𝑧 ∈ 𝑦 → ∃𝑓 𝑓:𝑥–onto→𝑦)) |
| 82 | 81 | exlimdv 1833 |
. . . . . . 7
⊢
((EXMID ∧ 𝑔:𝑦–1-1→𝑥) → (∃𝑧 𝑧 ∈ 𝑦 → ∃𝑓 𝑓:𝑥–onto→𝑦)) |
| 83 | 82 | imp 124 |
. . . . . 6
⊢
(((EXMID ∧ 𝑔:𝑦–1-1→𝑥) ∧ ∃𝑧 𝑧 ∈ 𝑦) → ∃𝑓 𝑓:𝑥–onto→𝑦) |
| 84 | 83 | an32s 568 |
. . . . 5
⊢
(((EXMID ∧ ∃𝑧 𝑧 ∈ 𝑦) ∧ 𝑔:𝑦–1-1→𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦) |
| 85 | 84 | adantlrr 483 |
. . . 4
⊢
(((EXMID ∧ (∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥)) ∧ 𝑔:𝑦–1-1→𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦) |
| 86 | 2, 85 | exlimddv 1913 |
. . 3
⊢
((EXMID ∧ (∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥)) → ∃𝑓 𝑓:𝑥–onto→𝑦) |
| 87 | 86 | ex 115 |
. 2
⊢
(EXMID → ((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦)) |
| 88 | 87 | alrimivv 1889 |
1
⊢
(EXMID → ∀𝑥∀𝑦((∃𝑧 𝑧 ∈ 𝑦 ∧ 𝑦 ≼ 𝑥) → ∃𝑓 𝑓:𝑥–onto→𝑦)) |