ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemim GIF version

Theorem exmidfodomrlemim 7157
Description: Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemim (EXMID → ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
Distinct variable groups:   𝑥,𝑓,𝑧   𝑦,𝑓,𝑧

Proof of Theorem exmidfodomrlemim
Dummy variables 𝑔 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 6715 . . . . 5 (𝑦𝑥 → ∃𝑔 𝑔:𝑦1-1𝑥)
21ad2antll 483 . . . 4 ((EXMID ∧ (∃𝑧 𝑧𝑦𝑦𝑥)) → ∃𝑔 𝑔:𝑦1-1𝑥)
3 df-f1 5193 . . . . . . . . . . . . . . . . 17 (𝑔:𝑦1-1𝑥 ↔ (𝑔:𝑦𝑥 ∧ Fun 𝑔))
43simprbi 273 . . . . . . . . . . . . . . . 16 (𝑔:𝑦1-1𝑥 → Fun 𝑔)
5 vex 2729 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
65fconst 5383 . . . . . . . . . . . . . . . . 17 ((𝑥 ∖ ran 𝑔) × {𝑧}):(𝑥 ∖ ran 𝑔)⟶{𝑧}
7 ffun 5340 . . . . . . . . . . . . . . . . 17 (((𝑥 ∖ ran 𝑔) × {𝑧}):(𝑥 ∖ ran 𝑔)⟶{𝑧} → Fun ((𝑥 ∖ ran 𝑔) × {𝑧}))
86, 7ax-mp 5 . . . . . . . . . . . . . . . 16 Fun ((𝑥 ∖ ran 𝑔) × {𝑧})
94, 8jctir 311 . . . . . . . . . . . . . . 15 (𝑔:𝑦1-1𝑥 → (Fun 𝑔 ∧ Fun ((𝑥 ∖ ran 𝑔) × {𝑧})))
10 df-rn 4615 . . . . . . . . . . . . . . . . . 18 ran 𝑔 = dom 𝑔
1110eqcomi 2169 . . . . . . . . . . . . . . . . 17 dom 𝑔 = ran 𝑔
125snm 3696 . . . . . . . . . . . . . . . . . 18 𝑤 𝑤 ∈ {𝑧}
13 dmxpm 4824 . . . . . . . . . . . . . . . . . 18 (∃𝑤 𝑤 ∈ {𝑧} → dom ((𝑥 ∖ ran 𝑔) × {𝑧}) = (𝑥 ∖ ran 𝑔))
1412, 13ax-mp 5 . . . . . . . . . . . . . . . . 17 dom ((𝑥 ∖ ran 𝑔) × {𝑧}) = (𝑥 ∖ ran 𝑔)
1511, 14ineq12i 3321 . . . . . . . . . . . . . . . 16 (dom 𝑔 ∩ dom ((𝑥 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∩ (𝑥 ∖ ran 𝑔))
16 disjdif 3481 . . . . . . . . . . . . . . . 16 (ran 𝑔 ∩ (𝑥 ∖ ran 𝑔)) = ∅
1715, 16eqtri 2186 . . . . . . . . . . . . . . 15 (dom 𝑔 ∩ dom ((𝑥 ∖ ran 𝑔) × {𝑧})) = ∅
18 funun 5232 . . . . . . . . . . . . . . 15 (((Fun 𝑔 ∧ Fun ((𝑥 ∖ ran 𝑔) × {𝑧})) ∧ (dom 𝑔 ∩ dom ((𝑥 ∖ ran 𝑔) × {𝑧})) = ∅) → Fun (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})))
199, 17, 18sylancl 410 . . . . . . . . . . . . . 14 (𝑔:𝑦1-1𝑥 → Fun (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})))
2019adantl 275 . . . . . . . . . . . . 13 (((EXMID𝑧𝑦) ∧ 𝑔:𝑦1-1𝑥) → Fun (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})))
21 dmun 4811 . . . . . . . . . . . . . . 15 dom (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝑥 ∖ ran 𝑔) × {𝑧}))
2210uneq1i 3272 . . . . . . . . . . . . . . 15 (ran 𝑔 ∪ dom ((𝑥 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝑥 ∖ ran 𝑔) × {𝑧}))
2314uneq2i 3273 . . . . . . . . . . . . . . 15 (ran 𝑔 ∪ dom ((𝑥 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝑥 ∖ ran 𝑔))
2421, 22, 233eqtr2i 2192 . . . . . . . . . . . . . 14 dom (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝑥 ∖ ran 𝑔))
25 f1rn 5394 . . . . . . . . . . . . . . . 16 (𝑔:𝑦1-1𝑥 → ran 𝑔𝑥)
2625adantl 275 . . . . . . . . . . . . . . 15 (((EXMID𝑧𝑦) ∧ 𝑔:𝑦1-1𝑥) → ran 𝑔𝑥)
27 exmidexmid 4175 . . . . . . . . . . . . . . . . 17 (EXMIDDECID 𝑢 ∈ ran 𝑔)
2827ralrimivw 2540 . . . . . . . . . . . . . . . 16 (EXMID → ∀𝑢𝑥 DECID 𝑢 ∈ ran 𝑔)
2928ad2antrr 480 . . . . . . . . . . . . . . 15 (((EXMID𝑧𝑦) ∧ 𝑔:𝑦1-1𝑥) → ∀𝑢𝑥 DECID 𝑢 ∈ ran 𝑔)
30 undifdcss 6888 . . . . . . . . . . . . . . 15 (𝑥 = (ran 𝑔 ∪ (𝑥 ∖ ran 𝑔)) ↔ (ran 𝑔𝑥 ∧ ∀𝑢𝑥 DECID 𝑢 ∈ ran 𝑔))
3126, 29, 30sylanbrc 414 . . . . . . . . . . . . . 14 (((EXMID𝑧𝑦) ∧ 𝑔:𝑦1-1𝑥) → 𝑥 = (ran 𝑔 ∪ (𝑥 ∖ ran 𝑔)))
3224, 31eqtr4id 2218 . . . . . . . . . . . . 13 (((EXMID𝑧𝑦) ∧ 𝑔:𝑦1-1𝑥) → dom (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑥)
33 df-fn 5191 . . . . . . . . . . . . 13 ((𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) Fn 𝑥 ↔ (Fun (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) ∧ dom (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑥))
3420, 32, 33sylanbrc 414 . . . . . . . . . . . 12 (((EXMID𝑧𝑦) ∧ 𝑔:𝑦1-1𝑥) → (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) Fn 𝑥)
35 rnun 5012 . . . . . . . . . . . . 13 ran (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ ran ((𝑥 ∖ ran 𝑔) × {𝑧}))
36 dfdm4 4796 . . . . . . . . . . . . . . . 16 dom 𝑔 = ran 𝑔
37 f1dm 5398 . . . . . . . . . . . . . . . 16 (𝑔:𝑦1-1𝑥 → dom 𝑔 = 𝑦)
3836, 37eqtr3id 2213 . . . . . . . . . . . . . . 15 (𝑔:𝑦1-1𝑥 → ran 𝑔 = 𝑦)
3938uneq1d 3275 . . . . . . . . . . . . . 14 (𝑔:𝑦1-1𝑥 → (ran 𝑔 ∪ ran ((𝑥 ∖ ran 𝑔) × {𝑧})) = (𝑦 ∪ ran ((𝑥 ∖ ran 𝑔) × {𝑧})))
40 exmidexmid 4175 . . . . . . . . . . . . . . . . . 18 (EXMIDDECID𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔))
41 exmiddc 826 . . . . . . . . . . . . . . . . . 18 (DECID𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) → (∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ∨ ¬ ∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔)))
4240, 41syl 14 . . . . . . . . . . . . . . . . 17 (EXMID → (∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ∨ ¬ ∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔)))
43 rnxpm 5033 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) = {𝑧})
4443adantr 274 . . . . . . . . . . . . . . . . . . . 20 ((∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ∧ 𝑧𝑦) → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) = {𝑧})
45 snssi 3717 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑦 → {𝑧} ⊆ 𝑦)
4645adantl 275 . . . . . . . . . . . . . . . . . . . 20 ((∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ∧ 𝑧𝑦) → {𝑧} ⊆ 𝑦)
4744, 46eqsstrd 3178 . . . . . . . . . . . . . . . . . . 19 ((∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ∧ 𝑧𝑦) → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦)
4847ex 114 . . . . . . . . . . . . . . . . . 18 (∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) → (𝑧𝑦 → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦))
49 notm0 3429 . . . . . . . . . . . . . . . . . . 19 (¬ ∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ↔ (𝑥 ∖ ran 𝑔) = ∅)
50 xpeq1 4618 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∖ ran 𝑔) = ∅ → ((𝑥 ∖ ran 𝑔) × {𝑧}) = (∅ × {𝑧}))
51 0xp 4684 . . . . . . . . . . . . . . . . . . . . . . . 24 (∅ × {𝑧}) = ∅
5250, 51eqtrdi 2215 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∖ ran 𝑔) = ∅ → ((𝑥 ∖ ran 𝑔) × {𝑧}) = ∅)
5352rneqd 4833 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∖ ran 𝑔) = ∅ → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) = ran ∅)
54 rn0 4860 . . . . . . . . . . . . . . . . . . . . . 22 ran ∅ = ∅
5553, 54eqtrdi 2215 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∖ ran 𝑔) = ∅ → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) = ∅)
56 0ss 3447 . . . . . . . . . . . . . . . . . . . . 21 ∅ ⊆ 𝑦
5755, 56eqsstrdi 3194 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∖ ran 𝑔) = ∅ → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦)
5857a1d 22 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∖ ran 𝑔) = ∅ → (𝑧𝑦 → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦))
5949, 58sylbi 120 . . . . . . . . . . . . . . . . . 18 (¬ ∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) → (𝑧𝑦 → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦))
6048, 59jaoi 706 . . . . . . . . . . . . . . . . 17 ((∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔) ∨ ¬ ∃𝑣 𝑣 ∈ (𝑥 ∖ ran 𝑔)) → (𝑧𝑦 → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦))
6142, 60syl 14 . . . . . . . . . . . . . . . 16 (EXMID → (𝑧𝑦 → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦))
6261imp 123 . . . . . . . . . . . . . . 15 ((EXMID𝑧𝑦) → ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦)
63 ssequn2 3295 . . . . . . . . . . . . . . 15 (ran ((𝑥 ∖ ran 𝑔) × {𝑧}) ⊆ 𝑦 ↔ (𝑦 ∪ ran ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑦)
6462, 63sylib 121 . . . . . . . . . . . . . 14 ((EXMID𝑧𝑦) → (𝑦 ∪ ran ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑦)
6539, 64sylan9eqr 2221 . . . . . . . . . . . . 13 (((EXMID𝑧𝑦) ∧ 𝑔:𝑦1-1𝑥) → (ran 𝑔 ∪ ran ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑦)
6635, 65syl5eq 2211 . . . . . . . . . . . 12 (((EXMID𝑧𝑦) ∧ 𝑔:𝑦1-1𝑥) → ran (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑦)
67 df-fo 5194 . . . . . . . . . . . 12 ((𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})):𝑥onto𝑦 ↔ ((𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) Fn 𝑥 ∧ ran (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) = 𝑦))
6834, 66, 67sylanbrc 414 . . . . . . . . . . 11 (((EXMID𝑧𝑦) ∧ 𝑔:𝑦1-1𝑥) → (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})):𝑥onto𝑦)
69 vex 2729 . . . . . . . . . . . . . 14 𝑔 ∈ V
7069cnvex 5142 . . . . . . . . . . . . 13 𝑔 ∈ V
71 vex 2729 . . . . . . . . . . . . . . 15 𝑥 ∈ V
72 difexg 4123 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 ∖ ran 𝑔) ∈ V)
7371, 72ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∖ ran 𝑔) ∈ V
745snex 4164 . . . . . . . . . . . . . 14 {𝑧} ∈ V
7573, 74xpex 4719 . . . . . . . . . . . . 13 ((𝑥 ∖ ran 𝑔) × {𝑧}) ∈ V
7670, 75unex 4419 . . . . . . . . . . . 12 (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) ∈ V
77 foeq1 5406 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})) → (𝑓:𝑥onto𝑦 ↔ (𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})):𝑥onto𝑦))
7876, 77spcev 2821 . . . . . . . . . . 11 ((𝑔 ∪ ((𝑥 ∖ ran 𝑔) × {𝑧})):𝑥onto𝑦 → ∃𝑓 𝑓:𝑥onto𝑦)
7968, 78syl 14 . . . . . . . . . 10 (((EXMID𝑧𝑦) ∧ 𝑔:𝑦1-1𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
8079an32s 558 . . . . . . . . 9 (((EXMID𝑔:𝑦1-1𝑥) ∧ 𝑧𝑦) → ∃𝑓 𝑓:𝑥onto𝑦)
8180ex 114 . . . . . . . 8 ((EXMID𝑔:𝑦1-1𝑥) → (𝑧𝑦 → ∃𝑓 𝑓:𝑥onto𝑦))
8281exlimdv 1807 . . . . . . 7 ((EXMID𝑔:𝑦1-1𝑥) → (∃𝑧 𝑧𝑦 → ∃𝑓 𝑓:𝑥onto𝑦))
8382imp 123 . . . . . 6 (((EXMID𝑔:𝑦1-1𝑥) ∧ ∃𝑧 𝑧𝑦) → ∃𝑓 𝑓:𝑥onto𝑦)
8483an32s 558 . . . . 5 (((EXMID ∧ ∃𝑧 𝑧𝑦) ∧ 𝑔:𝑦1-1𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
8584adantlrr 475 . . . 4 (((EXMID ∧ (∃𝑧 𝑧𝑦𝑦𝑥)) ∧ 𝑔:𝑦1-1𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
862, 85exlimddv 1886 . . 3 ((EXMID ∧ (∃𝑧 𝑧𝑦𝑦𝑥)) → ∃𝑓 𝑓:𝑥onto𝑦)
8786ex 114 . 2 (EXMID → ((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
8887alrimivv 1863 1 (EXMID → ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824  wal 1341   = wceq 1343  wex 1480  wcel 2136  wral 2444  Vcvv 2726  cdif 3113  cun 3114  cin 3115  wss 3116  c0 3409  {csn 3576   class class class wbr 3982  EXMIDwem 4173   × cxp 4602  ccnv 4603  dom cdm 4604  ran crn 4605  Fun wfun 5182   Fn wfn 5183  wf 5184  1-1wf1 5185  ontowfo 5186  cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-exmid 4174  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-dom 6708
This theorem is referenced by:  exmidfodomr  7160
  Copyright terms: Public domain W3C validator