ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1finf1o GIF version

Theorem f1finf1o 7110
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.)
Assertion
Ref Expression
f1finf1o ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))

Proof of Theorem f1finf1o
StepHypRef Expression
1 simpr 110 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 simplr 528 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐵 ∈ Fin)
3 f1rn 5531 . . . . . 6 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
43adantl 277 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐵)
5 f1fn 5532 . . . . . . . . 9 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
6 fnima 5441 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
75, 6syl 14 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → (𝐹𝐴) = ran 𝐹)
87adantl 277 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐹𝐴) = ran 𝐹)
9 ssid 3244 . . . . . . . . 9 𝐴𝐴
109a1i 9 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐴)
11 simpll 527 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
12 enfii 7032 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
132, 11, 12syl2anc 411 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)
14 f1imaeng 6942 . . . . . . . 8 ((𝐹:𝐴1-1𝐵𝐴𝐴𝐴 ∈ Fin) → (𝐹𝐴) ≈ 𝐴)
151, 10, 13, 14syl3anc 1271 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐹𝐴) ≈ 𝐴)
168, 15eqbrtrrd 4106 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐴)
17 entr 6934 . . . . . 6 ((ran 𝐹𝐴𝐴𝐵) → ran 𝐹𝐵)
1816, 11, 17syl2anc 411 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐵)
19 fisseneq 7092 . . . . 5 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵 ∧ ran 𝐹𝐵) → ran 𝐹 = 𝐵)
202, 4, 18, 19syl3anc 1271 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 = 𝐵)
21 dff1o5 5580 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
221, 20, 21sylanbrc 417 . . 3 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto𝐵)
2322ex 115 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
24 f1of1 5570 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
2523, 24impbid1 142 1 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wss 3197   class class class wbr 4082  ran crn 4719  cima 4721   Fn wfn 5312  1-1wf1 5314  1-1-ontowf1o 5316  cen 6883  Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888
This theorem is referenced by:  iseqf1olemqf1o  10723  crth  12741  eulerthlemh  12748  lgseisenlem2  15744  pwf1oexmid  16324
  Copyright terms: Public domain W3C validator