| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1finf1o | GIF version | ||
| Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) |
| Ref | Expression |
|---|---|
| f1finf1o | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . 4 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1→𝐵) | |
| 2 | simplr 528 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐵 ∈ Fin) | |
| 3 | f1rn 5476 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 4 | 3 | adantl 277 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ⊆ 𝐵) |
| 5 | f1fn 5477 | . . . . . . . . 9 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 6 | fnima 5388 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) | |
| 7 | 5, 6 | syl 14 | . . . . . . . 8 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 “ 𝐴) = ran 𝐹) |
| 8 | 7 | adantl 277 | . . . . . . 7 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 “ 𝐴) = ran 𝐹) |
| 9 | ssid 3212 | . . . . . . . . 9 ⊢ 𝐴 ⊆ 𝐴 | |
| 10 | 9 | a1i 9 | . . . . . . . 8 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ⊆ 𝐴) |
| 11 | simpll 527 | . . . . . . . . 9 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≈ 𝐵) | |
| 12 | enfii 6953 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | |
| 13 | 2, 11, 12 | syl2anc 411 | . . . . . . . 8 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) |
| 14 | f1imaeng 6869 | . . . . . . . 8 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ Fin) → (𝐹 “ 𝐴) ≈ 𝐴) | |
| 15 | 1, 10, 13, 14 | syl3anc 1249 | . . . . . . 7 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 “ 𝐴) ≈ 𝐴) |
| 16 | 8, 15 | eqbrtrrd 4067 | . . . . . 6 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ≈ 𝐴) |
| 17 | entr 6861 | . . . . . 6 ⊢ ((ran 𝐹 ≈ 𝐴 ∧ 𝐴 ≈ 𝐵) → ran 𝐹 ≈ 𝐵) | |
| 18 | 16, 11, 17 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ≈ 𝐵) |
| 19 | fisseneq 7013 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≈ 𝐵) → ran 𝐹 = 𝐵) | |
| 20 | 2, 4, 18, 19 | syl3anc 1249 | . . . 4 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 = 𝐵) |
| 21 | dff1o5 5525 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) | |
| 22 | 1, 20, 21 | sylanbrc 417 | . . 3 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
| 23 | 22 | ex 115 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→𝐵)) |
| 24 | f1of1 5515 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
| 25 | 23, 24 | impbid1 142 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 class class class wbr 4043 ran crn 4674 “ cima 4676 Fn wfn 5263 –1-1→wf1 5265 –1-1-onto→wf1o 5267 ≈ cen 6815 Fincfn 6817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-1o 6492 df-er 6610 df-en 6818 df-fin 6820 |
| This theorem is referenced by: iseqf1olemqf1o 10632 crth 12465 eulerthlemh 12472 lgseisenlem2 15466 pwf1oexmid 15800 |
| Copyright terms: Public domain | W3C validator |