Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1finf1o | GIF version |
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) |
Ref | Expression |
---|---|
f1finf1o | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . 4 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1→𝐵) | |
2 | simplr 520 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐵 ∈ Fin) | |
3 | f1rn 5394 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → ran 𝐹 ⊆ 𝐵) | |
4 | 3 | adantl 275 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ⊆ 𝐵) |
5 | f1fn 5395 | . . . . . . . . 9 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
6 | fnima 5306 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) | |
7 | 5, 6 | syl 14 | . . . . . . . 8 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 “ 𝐴) = ran 𝐹) |
8 | 7 | adantl 275 | . . . . . . 7 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 “ 𝐴) = ran 𝐹) |
9 | ssid 3162 | . . . . . . . . 9 ⊢ 𝐴 ⊆ 𝐴 | |
10 | 9 | a1i 9 | . . . . . . . 8 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ⊆ 𝐴) |
11 | simpll 519 | . . . . . . . . 9 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≈ 𝐵) | |
12 | enfii 6840 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | |
13 | 2, 11, 12 | syl2anc 409 | . . . . . . . 8 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) |
14 | f1imaeng 6758 | . . . . . . . 8 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ Fin) → (𝐹 “ 𝐴) ≈ 𝐴) | |
15 | 1, 10, 13, 14 | syl3anc 1228 | . . . . . . 7 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 “ 𝐴) ≈ 𝐴) |
16 | 8, 15 | eqbrtrrd 4006 | . . . . . 6 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ≈ 𝐴) |
17 | entr 6750 | . . . . . 6 ⊢ ((ran 𝐹 ≈ 𝐴 ∧ 𝐴 ≈ 𝐵) → ran 𝐹 ≈ 𝐵) | |
18 | 16, 11, 17 | syl2anc 409 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ≈ 𝐵) |
19 | fisseneq 6897 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≈ 𝐵) → ran 𝐹 = 𝐵) | |
20 | 2, 4, 18, 19 | syl3anc 1228 | . . . 4 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 = 𝐵) |
21 | dff1o5 5441 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) | |
22 | 1, 20, 21 | sylanbrc 414 | . . 3 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
23 | 22 | ex 114 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→𝐵)) |
24 | f1of1 5431 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
25 | 23, 24 | impbid1 141 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 class class class wbr 3982 ran crn 4605 “ cima 4607 Fn wfn 5183 –1-1→wf1 5185 –1-1-onto→wf1o 5187 ≈ cen 6704 Fincfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: iseqf1olemqf1o 10428 crth 12156 eulerthlemh 12163 pwf1oexmid 13889 |
Copyright terms: Public domain | W3C validator |