ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1finf1o GIF version

Theorem f1finf1o 6924
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.)
Assertion
Ref Expression
f1finf1o ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))

Proof of Theorem f1finf1o
StepHypRef Expression
1 simpr 109 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 simplr 525 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐵 ∈ Fin)
3 f1rn 5404 . . . . . 6 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
43adantl 275 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐵)
5 f1fn 5405 . . . . . . . . 9 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
6 fnima 5316 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
75, 6syl 14 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → (𝐹𝐴) = ran 𝐹)
87adantl 275 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐹𝐴) = ran 𝐹)
9 ssid 3167 . . . . . . . . 9 𝐴𝐴
109a1i 9 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐴)
11 simpll 524 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
12 enfii 6852 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
132, 11, 12syl2anc 409 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)
14 f1imaeng 6770 . . . . . . . 8 ((𝐹:𝐴1-1𝐵𝐴𝐴𝐴 ∈ Fin) → (𝐹𝐴) ≈ 𝐴)
151, 10, 13, 14syl3anc 1233 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐹𝐴) ≈ 𝐴)
168, 15eqbrtrrd 4013 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐴)
17 entr 6762 . . . . . 6 ((ran 𝐹𝐴𝐴𝐵) → ran 𝐹𝐵)
1816, 11, 17syl2anc 409 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐵)
19 fisseneq 6909 . . . . 5 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵 ∧ ran 𝐹𝐵) → ran 𝐹 = 𝐵)
202, 4, 18, 19syl3anc 1233 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 = 𝐵)
21 dff1o5 5451 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
221, 20, 21sylanbrc 415 . . 3 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto𝐵)
2322ex 114 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
24 f1of1 5441 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
2523, 24impbid1 141 1 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wss 3121   class class class wbr 3989  ran crn 4612  cima 4614   Fn wfn 5193  1-1wf1 5195  1-1-ontowf1o 5197  cen 6716  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  iseqf1olemqf1o  10449  crth  12178  eulerthlemh  12185  pwf1oexmid  14032
  Copyright terms: Public domain W3C validator