| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1finf1o | GIF version | ||
| Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) |
| Ref | Expression |
|---|---|
| f1finf1o | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . 4 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1→𝐵) | |
| 2 | simplr 528 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐵 ∈ Fin) | |
| 3 | f1rn 5494 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 4 | 3 | adantl 277 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ⊆ 𝐵) |
| 5 | f1fn 5495 | . . . . . . . . 9 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 6 | fnima 5404 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) | |
| 7 | 5, 6 | syl 14 | . . . . . . . 8 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 “ 𝐴) = ran 𝐹) |
| 8 | 7 | adantl 277 | . . . . . . 7 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 “ 𝐴) = ran 𝐹) |
| 9 | ssid 3217 | . . . . . . . . 9 ⊢ 𝐴 ⊆ 𝐴 | |
| 10 | 9 | a1i 9 | . . . . . . . 8 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ⊆ 𝐴) |
| 11 | simpll 527 | . . . . . . . . 9 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≈ 𝐵) | |
| 12 | enfii 6986 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | |
| 13 | 2, 11, 12 | syl2anc 411 | . . . . . . . 8 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) |
| 14 | f1imaeng 6897 | . . . . . . . 8 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ Fin) → (𝐹 “ 𝐴) ≈ 𝐴) | |
| 15 | 1, 10, 13, 14 | syl3anc 1250 | . . . . . . 7 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 “ 𝐴) ≈ 𝐴) |
| 16 | 8, 15 | eqbrtrrd 4075 | . . . . . 6 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ≈ 𝐴) |
| 17 | entr 6889 | . . . . . 6 ⊢ ((ran 𝐹 ≈ 𝐴 ∧ 𝐴 ≈ 𝐵) → ran 𝐹 ≈ 𝐵) | |
| 18 | 16, 11, 17 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ≈ 𝐵) |
| 19 | fisseneq 7046 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≈ 𝐵) → ran 𝐹 = 𝐵) | |
| 20 | 2, 4, 18, 19 | syl3anc 1250 | . . . 4 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 = 𝐵) |
| 21 | dff1o5 5543 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) | |
| 22 | 1, 20, 21 | sylanbrc 417 | . . 3 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
| 23 | 22 | ex 115 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→𝐵)) |
| 24 | f1of1 5533 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
| 25 | 23, 24 | impbid1 142 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 class class class wbr 4051 ran crn 4684 “ cima 4686 Fn wfn 5275 –1-1→wf1 5277 –1-1-onto→wf1o 5279 ≈ cen 6838 Fincfn 6840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1o 6515 df-er 6633 df-en 6841 df-fin 6843 |
| This theorem is referenced by: iseqf1olemqf1o 10673 crth 12621 eulerthlemh 12628 lgseisenlem2 15623 pwf1oexmid 16077 |
| Copyright terms: Public domain | W3C validator |