ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1finf1o GIF version

Theorem f1finf1o 7064
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.)
Assertion
Ref Expression
f1finf1o ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))

Proof of Theorem f1finf1o
StepHypRef Expression
1 simpr 110 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 simplr 528 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐵 ∈ Fin)
3 f1rn 5494 . . . . . 6 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
43adantl 277 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐵)
5 f1fn 5495 . . . . . . . . 9 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
6 fnima 5404 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
75, 6syl 14 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → (𝐹𝐴) = ran 𝐹)
87adantl 277 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐹𝐴) = ran 𝐹)
9 ssid 3217 . . . . . . . . 9 𝐴𝐴
109a1i 9 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐴)
11 simpll 527 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
12 enfii 6986 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
132, 11, 12syl2anc 411 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)
14 f1imaeng 6897 . . . . . . . 8 ((𝐹:𝐴1-1𝐵𝐴𝐴𝐴 ∈ Fin) → (𝐹𝐴) ≈ 𝐴)
151, 10, 13, 14syl3anc 1250 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐹𝐴) ≈ 𝐴)
168, 15eqbrtrrd 4075 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐴)
17 entr 6889 . . . . . 6 ((ran 𝐹𝐴𝐴𝐵) → ran 𝐹𝐵)
1816, 11, 17syl2anc 411 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐵)
19 fisseneq 7046 . . . . 5 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵 ∧ ran 𝐹𝐵) → ran 𝐹 = 𝐵)
202, 4, 18, 19syl3anc 1250 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 = 𝐵)
21 dff1o5 5543 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
221, 20, 21sylanbrc 417 . . 3 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto𝐵)
2322ex 115 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
24 f1of1 5533 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
2523, 24impbid1 142 1 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wss 3170   class class class wbr 4051  ran crn 4684  cima 4686   Fn wfn 5275  1-1wf1 5277  1-1-ontowf1o 5279  cen 6838  Fincfn 6840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-1o 6515  df-er 6633  df-en 6841  df-fin 6843
This theorem is referenced by:  iseqf1olemqf1o  10673  crth  12621  eulerthlemh  12628  lgseisenlem2  15623  pwf1oexmid  16077
  Copyright terms: Public domain W3C validator