ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudom GIF version

Theorem djudom 7058
Description: Dominance law for disjoint union. (Contributed by Jim Kingdon, 25-Jul-2022.)
Assertion
Ref Expression
djudom ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≼ (𝐵𝐷))

Proof of Theorem djudom
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 6715 . . 3 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
21adantr 274 . 2 ((𝐴𝐵𝐶𝐷) → ∃𝑓 𝑓:𝐴1-1𝐵)
3 brdomi 6715 . . . 4 (𝐶𝐷 → ∃𝑔 𝑔:𝐶1-1𝐷)
43ad2antlr 481 . . 3 (((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) → ∃𝑔 𝑔:𝐶1-1𝐷)
5 inlresf1 7026 . . . . . . . . 9 (inl ↾ 𝐵):𝐵1-1→(𝐵𝐷)
6 simplr 520 . . . . . . . . 9 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → 𝑓:𝐴1-1𝐵)
7 f1co 5405 . . . . . . . . 9 (((inl ↾ 𝐵):𝐵1-1→(𝐵𝐷) ∧ 𝑓:𝐴1-1𝐵) → ((inl ↾ 𝐵) ∘ 𝑓):𝐴1-1→(𝐵𝐷))
85, 6, 7sylancr 411 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ((inl ↾ 𝐵) ∘ 𝑓):𝐴1-1→(𝐵𝐷))
9 inrresf1 7027 . . . . . . . . 9 (inr ↾ 𝐷):𝐷1-1→(𝐵𝐷)
10 simpr 109 . . . . . . . . 9 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → 𝑔:𝐶1-1𝐷)
11 f1co 5405 . . . . . . . . 9 (((inr ↾ 𝐷):𝐷1-1→(𝐵𝐷) ∧ 𝑔:𝐶1-1𝐷) → ((inr ↾ 𝐷) ∘ 𝑔):𝐶1-1→(𝐵𝐷))
129, 10, 11sylancr 411 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ((inr ↾ 𝐷) ∘ 𝑔):𝐶1-1→(𝐵𝐷))
13 rnco 5110 . . . . . . . . . . 11 ran ((inl ↾ 𝐵) ∘ 𝑓) = ran ((inl ↾ 𝐵) ↾ ran 𝑓)
14 f1rn 5394 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1𝐵 → ran 𝑓𝐵)
1514ad2antlr 481 . . . . . . . . . . . . 13 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ran 𝑓𝐵)
16 resabs1 4913 . . . . . . . . . . . . 13 (ran 𝑓𝐵 → ((inl ↾ 𝐵) ↾ ran 𝑓) = (inl ↾ ran 𝑓))
1715, 16syl 14 . . . . . . . . . . . 12 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ((inl ↾ 𝐵) ↾ ran 𝑓) = (inl ↾ ran 𝑓))
1817rneqd 4833 . . . . . . . . . . 11 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ran ((inl ↾ 𝐵) ↾ ran 𝑓) = ran (inl ↾ ran 𝑓))
1913, 18syl5eq 2211 . . . . . . . . . 10 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ran ((inl ↾ 𝐵) ∘ 𝑓) = ran (inl ↾ ran 𝑓))
20 rnco 5110 . . . . . . . . . . 11 ran ((inr ↾ 𝐷) ∘ 𝑔) = ran ((inr ↾ 𝐷) ↾ ran 𝑔)
21 f1rn 5394 . . . . . . . . . . . . 13 (𝑔:𝐶1-1𝐷 → ran 𝑔𝐷)
22 resabs1 4913 . . . . . . . . . . . . 13 (ran 𝑔𝐷 → ((inr ↾ 𝐷) ↾ ran 𝑔) = (inr ↾ ran 𝑔))
2310, 21, 223syl 17 . . . . . . . . . . . 12 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ((inr ↾ 𝐷) ↾ ran 𝑔) = (inr ↾ ran 𝑔))
2423rneqd 4833 . . . . . . . . . . 11 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ran ((inr ↾ 𝐷) ↾ ran 𝑔) = ran (inr ↾ ran 𝑔))
2520, 24syl5eq 2211 . . . . . . . . . 10 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ran ((inr ↾ 𝐷) ∘ 𝑔) = ran (inr ↾ ran 𝑔))
2619, 25ineq12d 3324 . . . . . . . . 9 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → (ran ((inl ↾ 𝐵) ∘ 𝑓) ∩ ran ((inr ↾ 𝐷) ∘ 𝑔)) = (ran (inl ↾ ran 𝑓) ∩ ran (inr ↾ ran 𝑔)))
27 djuinr 7028 . . . . . . . . 9 (ran (inl ↾ ran 𝑓) ∩ ran (inr ↾ ran 𝑔)) = ∅
2826, 27eqtrdi 2215 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → (ran ((inl ↾ 𝐵) ∘ 𝑓) ∩ ran ((inr ↾ 𝐷) ∘ 𝑔)) = ∅)
298, 12, 28casef1 7055 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)–1-1→(𝐵𝐷))
30 f1f 5393 . . . . . . 7 (case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)–1-1→(𝐵𝐷) → case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)⟶(𝐵𝐷))
3129, 30syl 14 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)⟶(𝐵𝐷))
32 reldom 6711 . . . . . . . . 9 Rel ≼
3332brrelex1i 4647 . . . . . . . 8 (𝐴𝐵𝐴 ∈ V)
3433ad3antrrr 484 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → 𝐴 ∈ V)
3532brrelex1i 4647 . . . . . . . 8 (𝐶𝐷𝐶 ∈ V)
3635ad3antlr 485 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → 𝐶 ∈ V)
37 djuex 7008 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴𝐶) ∈ V)
3834, 36, 37syl2anc 409 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → (𝐴𝐶) ∈ V)
39 fex 5714 . . . . . 6 ((case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)⟶(𝐵𝐷) ∧ (𝐴𝐶) ∈ V) → case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)) ∈ V)
4031, 38, 39syl2anc 409 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)) ∈ V)
41 f1eq1 5388 . . . . . 6 ( = case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)) → (:(𝐴𝐶)–1-1→(𝐵𝐷) ↔ case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)–1-1→(𝐵𝐷)))
4241spcegv 2814 . . . . 5 (case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)) ∈ V → (case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)–1-1→(𝐵𝐷) → ∃ :(𝐴𝐶)–1-1→(𝐵𝐷)))
4340, 29, 42sylc 62 . . . 4 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ∃ :(𝐴𝐶)–1-1→(𝐵𝐷))
4432brrelex2i 4648 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
4544ad3antrrr 484 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → 𝐵 ∈ V)
4632brrelex2i 4648 . . . . . 6 (𝐶𝐷𝐷 ∈ V)
4746ad3antlr 485 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → 𝐷 ∈ V)
48 djuex 7008 . . . . . 6 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
49 brdomg 6714 . . . . . 6 ((𝐵𝐷) ∈ V → ((𝐴𝐶) ≼ (𝐵𝐷) ↔ ∃ :(𝐴𝐶)–1-1→(𝐵𝐷)))
5048, 49syl 14 . . . . 5 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → ((𝐴𝐶) ≼ (𝐵𝐷) ↔ ∃ :(𝐴𝐶)–1-1→(𝐵𝐷)))
5145, 47, 50syl2anc 409 . . . 4 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ((𝐴𝐶) ≼ (𝐵𝐷) ↔ ∃ :(𝐴𝐶)–1-1→(𝐵𝐷)))
5243, 51mpbird 166 . . 3 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → (𝐴𝐶) ≼ (𝐵𝐷))
534, 52exlimddv 1886 . 2 (((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) → (𝐴𝐶) ≼ (𝐵𝐷))
542, 53exlimddv 1886 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≼ (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  cin 3115  wss 3116  c0 3409   class class class wbr 3982  ran crn 4605  cres 4606  ccom 4608  wf 5184  1-1wf1 5185  cdom 6705  cdju 7002  inlcinl 7010  inrcinr 7011  casecdjucase 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dom 6708  df-dju 7003  df-inl 7012  df-inr 7013  df-case 7049
This theorem is referenced by:  exmidfodomrlemr  7158  exmidfodomrlemrALT  7159  sbthom  13905
  Copyright terms: Public domain W3C validator