ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudom GIF version

Theorem djudom 7221
Description: Dominance law for disjoint union. (Contributed by Jim Kingdon, 25-Jul-2022.)
Assertion
Ref Expression
djudom ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≼ (𝐵𝐷))

Proof of Theorem djudom
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 6861 . . 3 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
21adantr 276 . 2 ((𝐴𝐵𝐶𝐷) → ∃𝑓 𝑓:𝐴1-1𝐵)
3 brdomi 6861 . . . 4 (𝐶𝐷 → ∃𝑔 𝑔:𝐶1-1𝐷)
43ad2antlr 489 . . 3 (((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) → ∃𝑔 𝑔:𝐶1-1𝐷)
5 inlresf1 7189 . . . . . . . . 9 (inl ↾ 𝐵):𝐵1-1→(𝐵𝐷)
6 simplr 528 . . . . . . . . 9 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → 𝑓:𝐴1-1𝐵)
7 f1co 5515 . . . . . . . . 9 (((inl ↾ 𝐵):𝐵1-1→(𝐵𝐷) ∧ 𝑓:𝐴1-1𝐵) → ((inl ↾ 𝐵) ∘ 𝑓):𝐴1-1→(𝐵𝐷))
85, 6, 7sylancr 414 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ((inl ↾ 𝐵) ∘ 𝑓):𝐴1-1→(𝐵𝐷))
9 inrresf1 7190 . . . . . . . . 9 (inr ↾ 𝐷):𝐷1-1→(𝐵𝐷)
10 simpr 110 . . . . . . . . 9 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → 𝑔:𝐶1-1𝐷)
11 f1co 5515 . . . . . . . . 9 (((inr ↾ 𝐷):𝐷1-1→(𝐵𝐷) ∧ 𝑔:𝐶1-1𝐷) → ((inr ↾ 𝐷) ∘ 𝑔):𝐶1-1→(𝐵𝐷))
129, 10, 11sylancr 414 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ((inr ↾ 𝐷) ∘ 𝑔):𝐶1-1→(𝐵𝐷))
13 rnco 5208 . . . . . . . . . . 11 ran ((inl ↾ 𝐵) ∘ 𝑓) = ran ((inl ↾ 𝐵) ↾ ran 𝑓)
14 f1rn 5504 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1𝐵 → ran 𝑓𝐵)
1514ad2antlr 489 . . . . . . . . . . . . 13 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ran 𝑓𝐵)
16 resabs1 5007 . . . . . . . . . . . . 13 (ran 𝑓𝐵 → ((inl ↾ 𝐵) ↾ ran 𝑓) = (inl ↾ ran 𝑓))
1715, 16syl 14 . . . . . . . . . . . 12 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ((inl ↾ 𝐵) ↾ ran 𝑓) = (inl ↾ ran 𝑓))
1817rneqd 4926 . . . . . . . . . . 11 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ran ((inl ↾ 𝐵) ↾ ran 𝑓) = ran (inl ↾ ran 𝑓))
1913, 18eqtrid 2252 . . . . . . . . . 10 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ran ((inl ↾ 𝐵) ∘ 𝑓) = ran (inl ↾ ran 𝑓))
20 rnco 5208 . . . . . . . . . . 11 ran ((inr ↾ 𝐷) ∘ 𝑔) = ran ((inr ↾ 𝐷) ↾ ran 𝑔)
21 f1rn 5504 . . . . . . . . . . . . 13 (𝑔:𝐶1-1𝐷 → ran 𝑔𝐷)
22 resabs1 5007 . . . . . . . . . . . . 13 (ran 𝑔𝐷 → ((inr ↾ 𝐷) ↾ ran 𝑔) = (inr ↾ ran 𝑔))
2310, 21, 223syl 17 . . . . . . . . . . . 12 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ((inr ↾ 𝐷) ↾ ran 𝑔) = (inr ↾ ran 𝑔))
2423rneqd 4926 . . . . . . . . . . 11 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ran ((inr ↾ 𝐷) ↾ ran 𝑔) = ran (inr ↾ ran 𝑔))
2520, 24eqtrid 2252 . . . . . . . . . 10 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ran ((inr ↾ 𝐷) ∘ 𝑔) = ran (inr ↾ ran 𝑔))
2619, 25ineq12d 3383 . . . . . . . . 9 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → (ran ((inl ↾ 𝐵) ∘ 𝑓) ∩ ran ((inr ↾ 𝐷) ∘ 𝑔)) = (ran (inl ↾ ran 𝑓) ∩ ran (inr ↾ ran 𝑔)))
27 djuinr 7191 . . . . . . . . 9 (ran (inl ↾ ran 𝑓) ∩ ran (inr ↾ ran 𝑔)) = ∅
2826, 27eqtrdi 2256 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → (ran ((inl ↾ 𝐵) ∘ 𝑓) ∩ ran ((inr ↾ 𝐷) ∘ 𝑔)) = ∅)
298, 12, 28casef1 7218 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)–1-1→(𝐵𝐷))
30 f1f 5503 . . . . . . 7 (case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)–1-1→(𝐵𝐷) → case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)⟶(𝐵𝐷))
3129, 30syl 14 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)⟶(𝐵𝐷))
32 reldom 6855 . . . . . . . . 9 Rel ≼
3332brrelex1i 4736 . . . . . . . 8 (𝐴𝐵𝐴 ∈ V)
3433ad3antrrr 492 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → 𝐴 ∈ V)
3532brrelex1i 4736 . . . . . . . 8 (𝐶𝐷𝐶 ∈ V)
3635ad3antlr 493 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → 𝐶 ∈ V)
37 djuex 7171 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴𝐶) ∈ V)
3834, 36, 37syl2anc 411 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → (𝐴𝐶) ∈ V)
39 fex 5836 . . . . . 6 ((case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)⟶(𝐵𝐷) ∧ (𝐴𝐶) ∈ V) → case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)) ∈ V)
4031, 38, 39syl2anc 411 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)) ∈ V)
41 f1eq1 5498 . . . . . 6 ( = case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)) → (:(𝐴𝐶)–1-1→(𝐵𝐷) ↔ case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)–1-1→(𝐵𝐷)))
4241spcegv 2868 . . . . 5 (case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)) ∈ V → (case(((inl ↾ 𝐵) ∘ 𝑓), ((inr ↾ 𝐷) ∘ 𝑔)):(𝐴𝐶)–1-1→(𝐵𝐷) → ∃ :(𝐴𝐶)–1-1→(𝐵𝐷)))
4340, 29, 42sylc 62 . . . 4 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ∃ :(𝐴𝐶)–1-1→(𝐵𝐷))
4432brrelex2i 4737 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
4544ad3antrrr 492 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → 𝐵 ∈ V)
4632brrelex2i 4737 . . . . . 6 (𝐶𝐷𝐷 ∈ V)
4746ad3antlr 493 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → 𝐷 ∈ V)
48 djuex 7171 . . . . . 6 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
49 brdomg 6860 . . . . . 6 ((𝐵𝐷) ∈ V → ((𝐴𝐶) ≼ (𝐵𝐷) ↔ ∃ :(𝐴𝐶)–1-1→(𝐵𝐷)))
5048, 49syl 14 . . . . 5 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → ((𝐴𝐶) ≼ (𝐵𝐷) ↔ ∃ :(𝐴𝐶)–1-1→(𝐵𝐷)))
5145, 47, 50syl2anc 411 . . . 4 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → ((𝐴𝐶) ≼ (𝐵𝐷) ↔ ∃ :(𝐴𝐶)–1-1→(𝐵𝐷)))
5243, 51mpbird 167 . . 3 ((((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) ∧ 𝑔:𝐶1-1𝐷) → (𝐴𝐶) ≼ (𝐵𝐷))
534, 52exlimddv 1923 . 2 (((𝐴𝐵𝐶𝐷) ∧ 𝑓:𝐴1-1𝐵) → (𝐴𝐶) ≼ (𝐵𝐷))
542, 53exlimddv 1923 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≼ (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2178  Vcvv 2776  cin 3173  wss 3174  c0 3468   class class class wbr 4059  ran crn 4694  cres 4695  ccom 4697  wf 5286  1-1wf1 5287  cdom 6849  cdju 7165  inlcinl 7173  inrcinr 7174  casecdjucase 7211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-dom 6852  df-dju 7166  df-inl 7175  df-inr 7176  df-case 7212
This theorem is referenced by:  exmidfodomrlemr  7341  exmidfodomrlemrALT  7342  sbthom  16167
  Copyright terms: Public domain W3C validator