ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun11iun GIF version

Theorem fun11iun 5356
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
fun11iun.1 (𝑥 = 𝑦𝐵 = 𝐶)
fun11iun.2 𝐵 ∈ V
Assertion
Ref Expression
fun11iun (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑦)

Proof of Theorem fun11iun
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2663 . . . . . . . . . 10 𝑢 ∈ V
2 eqeq1 2124 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑧 = 𝐵𝑢 = 𝐵))
32rexbidv 2415 . . . . . . . . . 10 (𝑧 = 𝑢 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑢 = 𝐵))
41, 3elab 2802 . . . . . . . . 9 (𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑢 = 𝐵)
5 r19.29 2546 . . . . . . . . . 10 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ∃𝑥𝐴 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵))
6 nfv 1493 . . . . . . . . . . . 12 𝑥(Fun 𝑢 ∧ Fun 𝑢)
7 nfre1 2453 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝑧 = 𝐵
87nfab 2263 . . . . . . . . . . . . 13 𝑥{𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
9 nfv 1493 . . . . . . . . . . . . 13 𝑥(𝑢𝑣𝑣𝑢)
108, 9nfralxy 2448 . . . . . . . . . . . 12 𝑥𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)
116, 10nfan 1529 . . . . . . . . . . 11 𝑥((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
12 f1eq1 5293 . . . . . . . . . . . . . . . 16 (𝑢 = 𝐵 → (𝑢:𝐷1-1𝑆𝐵:𝐷1-1𝑆))
1312biimparc 297 . . . . . . . . . . . . . . 15 ((𝐵:𝐷1-1𝑆𝑢 = 𝐵) → 𝑢:𝐷1-1𝑆)
14 df-f1 5098 . . . . . . . . . . . . . . . 16 (𝑢:𝐷1-1𝑆 ↔ (𝑢:𝐷𝑆 ∧ Fun 𝑢))
15 ffun 5245 . . . . . . . . . . . . . . . . 17 (𝑢:𝐷𝑆 → Fun 𝑢)
1615anim1i 338 . . . . . . . . . . . . . . . 16 ((𝑢:𝐷𝑆 ∧ Fun 𝑢) → (Fun 𝑢 ∧ Fun 𝑢))
1714, 16sylbi 120 . . . . . . . . . . . . . . 15 (𝑢:𝐷1-1𝑆 → (Fun 𝑢 ∧ Fun 𝑢))
1813, 17syl 14 . . . . . . . . . . . . . 14 ((𝐵:𝐷1-1𝑆𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun 𝑢))
1918adantlr 468 . . . . . . . . . . . . 13 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun 𝑢))
20 vex 2663 . . . . . . . . . . . . . . . 16 𝑣 ∈ V
21 eqeq1 2124 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝑧 = 𝐵𝑣 = 𝐵))
2221rexbidv 2415 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑣 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑣 = 𝐵))
2320, 22elab 2802 . . . . . . . . . . . . . . 15 (𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑣 = 𝐵)
24 fun11iun.1 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦𝐵 = 𝐶)
2524eqeq2d 2129 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑣 = 𝐵𝑣 = 𝐶))
2625cbvrexv 2632 . . . . . . . . . . . . . . . 16 (∃𝑥𝐴 𝑣 = 𝐵 ↔ ∃𝑦𝐴 𝑣 = 𝐶)
27 r19.29 2546 . . . . . . . . . . . . . . . . . . 19 ((∀𝑦𝐴 (𝐵𝐶𝐶𝐵) ∧ ∃𝑦𝐴 𝑣 = 𝐶) → ∃𝑦𝐴 ((𝐵𝐶𝐶𝐵) ∧ 𝑣 = 𝐶))
28 sseq12 3092 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 = 𝐵𝑣 = 𝐶) → (𝑢𝑣𝐵𝐶))
2928ancoms 266 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 = 𝐶𝑢 = 𝐵) → (𝑢𝑣𝐵𝐶))
30 sseq12 3092 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 = 𝐶𝑢 = 𝐵) → (𝑣𝑢𝐶𝐵))
3129, 30orbi12d 767 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 = 𝐶𝑢 = 𝐵) → ((𝑢𝑣𝑣𝑢) ↔ (𝐵𝐶𝐶𝐵)))
3231biimprcd 159 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵𝐶𝐶𝐵) → ((𝑣 = 𝐶𝑢 = 𝐵) → (𝑢𝑣𝑣𝑢)))
3332expdimp 257 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵𝐶𝐶𝐵) ∧ 𝑣 = 𝐶) → (𝑢 = 𝐵 → (𝑢𝑣𝑣𝑢)))
3433rexlimivw 2522 . . . . . . . . . . . . . . . . . . . 20 (∃𝑦𝐴 ((𝐵𝐶𝐶𝐵) ∧ 𝑣 = 𝐶) → (𝑢 = 𝐵 → (𝑢𝑣𝑣𝑢)))
3534imp 123 . . . . . . . . . . . . . . . . . . 19 ((∃𝑦𝐴 ((𝐵𝐶𝐶𝐵) ∧ 𝑣 = 𝐶) ∧ 𝑢 = 𝐵) → (𝑢𝑣𝑣𝑢))
3627, 35sylan 281 . . . . . . . . . . . . . . . . . 18 (((∀𝑦𝐴 (𝐵𝐶𝐶𝐵) ∧ ∃𝑦𝐴 𝑣 = 𝐶) ∧ 𝑢 = 𝐵) → (𝑢𝑣𝑣𝑢))
3736an32s 542 . . . . . . . . . . . . . . . . 17 (((∀𝑦𝐴 (𝐵𝐶𝐶𝐵) ∧ 𝑢 = 𝐵) ∧ ∃𝑦𝐴 𝑣 = 𝐶) → (𝑢𝑣𝑣𝑢))
3837adantlll 471 . . . . . . . . . . . . . . . 16 ((((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) ∧ ∃𝑦𝐴 𝑣 = 𝐶) → (𝑢𝑣𝑣𝑢))
3926, 38sylan2b 285 . . . . . . . . . . . . . . 15 ((((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) ∧ ∃𝑥𝐴 𝑣 = 𝐵) → (𝑢𝑣𝑣𝑢))
4023, 39sylan2b 285 . . . . . . . . . . . . . 14 ((((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (𝑢𝑣𝑣𝑢))
4140ralrimiva 2482 . . . . . . . . . . . . 13 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
4219, 41jca 304 . . . . . . . . . . . 12 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
4342a1i 9 . . . . . . . . . . 11 (𝑥𝐴 → (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))))
4411, 43rexlimi 2519 . . . . . . . . . 10 (∃𝑥𝐴 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
455, 44syl 14 . . . . . . . . 9 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
464, 45sylan2b 285 . . . . . . . 8 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
4746ralrimiva 2482 . . . . . . 7 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
48 fun11uni 5163 . . . . . . 7 (∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)) → (Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ∧ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}))
4947, 48syl 14 . . . . . 6 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ∧ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}))
5049simpld 111 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
51 fun11iun.2 . . . . . . 7 𝐵 ∈ V
5251dfiun2 3817 . . . . . 6 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
5352funeqi 5114 . . . . 5 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
5450, 53sylibr 133 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
55 nfra1 2443 . . . . . . 7 𝑥𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵))
56 rsp 2457 . . . . . . . . 9 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑥𝐴 → (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵))))
571eldm2 4707 . . . . . . . . . . 11 (𝑢 ∈ dom 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝐵)
58 f1dm 5303 . . . . . . . . . . . 12 (𝐵:𝐷1-1𝑆 → dom 𝐵 = 𝐷)
5958eleq2d 2187 . . . . . . . . . . 11 (𝐵:𝐷1-1𝑆 → (𝑢 ∈ dom 𝐵𝑢𝐷))
6057, 59syl5bbr 193 . . . . . . . . . 10 (𝐵:𝐷1-1𝑆 → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
6160adantr 274 . . . . . . . . 9 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
6256, 61syl6 33 . . . . . . . 8 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑥𝐴 → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷)))
6362imp 123 . . . . . . 7 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑥𝐴) → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
6455, 63rexbida 2409 . . . . . 6 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑥𝐴 𝑢𝐷))
65 eliun 3787 . . . . . . . 8 (⟨𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
6665exbii 1569 . . . . . . 7 (∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
671eldm2 4707 . . . . . . 7 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵)
68 rexcom4 2683 . . . . . . 7 (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
6966, 67, 683bitr4i 211 . . . . . 6 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵)
70 eliun 3787 . . . . . 6 (𝑢 𝑥𝐴 𝐷 ↔ ∃𝑥𝐴 𝑢𝐷)
7164, 69, 703bitr4g 222 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑢 ∈ dom 𝑥𝐴 𝐵𝑢 𝑥𝐴 𝐷))
7271eqrdv 2115 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷)
73 df-fn 5096 . . . 4 ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ↔ (Fun 𝑥𝐴 𝐵 ∧ dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷))
7454, 72, 73sylanbrc 413 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷)
75 rniun 4919 . . . 4 ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
76 f1rn 5299 . . . . . . 7 (𝐵:𝐷1-1𝑆 → ran 𝐵𝑆)
7776adantr 274 . . . . . 6 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝐵𝑆)
7877ralimi 2472 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑥𝐴 ran 𝐵𝑆)
79 iunss 3824 . . . . 5 ( 𝑥𝐴 ran 𝐵𝑆 ↔ ∀𝑥𝐴 ran 𝐵𝑆)
8078, 79sylibr 133 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 ran 𝐵𝑆)
8175, 80eqsstrid 3113 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝑥𝐴 𝐵𝑆)
82 df-f 5097 . . 3 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ↔ ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ∧ ran 𝑥𝐴 𝐵𝑆))
8374, 81, 82sylanbrc 413 . 2 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆)
8449simprd 113 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
8552cnveqi 4684 . . . 4 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
8685funeqi 5114 . . 3 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
8784, 86sylibr 133 . 2 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
88 df-f1 5098 . 2 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆 ↔ ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ∧ Fun 𝑥𝐴 𝐵))
8983, 87, 88sylanbrc 413 1 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 682   = wceq 1316  wex 1453  wcel 1465  {cab 2103  wral 2393  wrex 2394  Vcvv 2660  wss 3041  cop 3500   cuni 3706   ciun 3783  ccnv 4508  dom cdm 4509  ran crn 4510  Fun wfun 5087   Fn wfn 5088  wf 5089  1-1wf1 5090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator