ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun11iun GIF version

Theorem fun11iun 5447
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
fun11iun.1 (𝑥 = 𝑦𝐵 = 𝐶)
fun11iun.2 𝐵 ∈ V
Assertion
Ref Expression
fun11iun (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑦)

Proof of Theorem fun11iun
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2724 . . . . . . . . . 10 𝑢 ∈ V
2 eqeq1 2171 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑧 = 𝐵𝑢 = 𝐵))
32rexbidv 2465 . . . . . . . . . 10 (𝑧 = 𝑢 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑢 = 𝐵))
41, 3elab 2865 . . . . . . . . 9 (𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑢 = 𝐵)
5 r19.29 2601 . . . . . . . . . 10 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ∃𝑥𝐴 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵))
6 nfv 1515 . . . . . . . . . . . 12 𝑥(Fun 𝑢 ∧ Fun 𝑢)
7 nfre1 2507 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝑧 = 𝐵
87nfab 2311 . . . . . . . . . . . . 13 𝑥{𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
9 nfv 1515 . . . . . . . . . . . . 13 𝑥(𝑢𝑣𝑣𝑢)
108, 9nfralxy 2502 . . . . . . . . . . . 12 𝑥𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)
116, 10nfan 1552 . . . . . . . . . . 11 𝑥((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
12 f1eq1 5382 . . . . . . . . . . . . . . . 16 (𝑢 = 𝐵 → (𝑢:𝐷1-1𝑆𝐵:𝐷1-1𝑆))
1312biimparc 297 . . . . . . . . . . . . . . 15 ((𝐵:𝐷1-1𝑆𝑢 = 𝐵) → 𝑢:𝐷1-1𝑆)
14 df-f1 5187 . . . . . . . . . . . . . . . 16 (𝑢:𝐷1-1𝑆 ↔ (𝑢:𝐷𝑆 ∧ Fun 𝑢))
15 ffun 5334 . . . . . . . . . . . . . . . . 17 (𝑢:𝐷𝑆 → Fun 𝑢)
1615anim1i 338 . . . . . . . . . . . . . . . 16 ((𝑢:𝐷𝑆 ∧ Fun 𝑢) → (Fun 𝑢 ∧ Fun 𝑢))
1714, 16sylbi 120 . . . . . . . . . . . . . . 15 (𝑢:𝐷1-1𝑆 → (Fun 𝑢 ∧ Fun 𝑢))
1813, 17syl 14 . . . . . . . . . . . . . 14 ((𝐵:𝐷1-1𝑆𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun 𝑢))
1918adantlr 469 . . . . . . . . . . . . 13 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun 𝑢))
20 vex 2724 . . . . . . . . . . . . . . . 16 𝑣 ∈ V
21 eqeq1 2171 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝑧 = 𝐵𝑣 = 𝐵))
2221rexbidv 2465 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑣 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑣 = 𝐵))
2320, 22elab 2865 . . . . . . . . . . . . . . 15 (𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑣 = 𝐵)
24 fun11iun.1 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦𝐵 = 𝐶)
2524eqeq2d 2176 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑣 = 𝐵𝑣 = 𝐶))
2625cbvrexv 2690 . . . . . . . . . . . . . . . 16 (∃𝑥𝐴 𝑣 = 𝐵 ↔ ∃𝑦𝐴 𝑣 = 𝐶)
27 r19.29 2601 . . . . . . . . . . . . . . . . . . 19 ((∀𝑦𝐴 (𝐵𝐶𝐶𝐵) ∧ ∃𝑦𝐴 𝑣 = 𝐶) → ∃𝑦𝐴 ((𝐵𝐶𝐶𝐵) ∧ 𝑣 = 𝐶))
28 sseq12 3162 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 = 𝐵𝑣 = 𝐶) → (𝑢𝑣𝐵𝐶))
2928ancoms 266 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 = 𝐶𝑢 = 𝐵) → (𝑢𝑣𝐵𝐶))
30 sseq12 3162 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 = 𝐶𝑢 = 𝐵) → (𝑣𝑢𝐶𝐵))
3129, 30orbi12d 783 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 = 𝐶𝑢 = 𝐵) → ((𝑢𝑣𝑣𝑢) ↔ (𝐵𝐶𝐶𝐵)))
3231biimprcd 159 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵𝐶𝐶𝐵) → ((𝑣 = 𝐶𝑢 = 𝐵) → (𝑢𝑣𝑣𝑢)))
3332expdimp 257 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵𝐶𝐶𝐵) ∧ 𝑣 = 𝐶) → (𝑢 = 𝐵 → (𝑢𝑣𝑣𝑢)))
3433rexlimivw 2577 . . . . . . . . . . . . . . . . . . . 20 (∃𝑦𝐴 ((𝐵𝐶𝐶𝐵) ∧ 𝑣 = 𝐶) → (𝑢 = 𝐵 → (𝑢𝑣𝑣𝑢)))
3534imp 123 . . . . . . . . . . . . . . . . . . 19 ((∃𝑦𝐴 ((𝐵𝐶𝐶𝐵) ∧ 𝑣 = 𝐶) ∧ 𝑢 = 𝐵) → (𝑢𝑣𝑣𝑢))
3627, 35sylan 281 . . . . . . . . . . . . . . . . . 18 (((∀𝑦𝐴 (𝐵𝐶𝐶𝐵) ∧ ∃𝑦𝐴 𝑣 = 𝐶) ∧ 𝑢 = 𝐵) → (𝑢𝑣𝑣𝑢))
3736an32s 558 . . . . . . . . . . . . . . . . 17 (((∀𝑦𝐴 (𝐵𝐶𝐶𝐵) ∧ 𝑢 = 𝐵) ∧ ∃𝑦𝐴 𝑣 = 𝐶) → (𝑢𝑣𝑣𝑢))
3837adantlll 472 . . . . . . . . . . . . . . . 16 ((((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) ∧ ∃𝑦𝐴 𝑣 = 𝐶) → (𝑢𝑣𝑣𝑢))
3926, 38sylan2b 285 . . . . . . . . . . . . . . 15 ((((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) ∧ ∃𝑥𝐴 𝑣 = 𝐵) → (𝑢𝑣𝑣𝑢))
4023, 39sylan2b 285 . . . . . . . . . . . . . 14 ((((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (𝑢𝑣𝑣𝑢))
4140ralrimiva 2537 . . . . . . . . . . . . 13 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
4219, 41jca 304 . . . . . . . . . . . 12 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
4342a1i 9 . . . . . . . . . . 11 (𝑥𝐴 → (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))))
4411, 43rexlimi 2574 . . . . . . . . . 10 (∃𝑥𝐴 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
455, 44syl 14 . . . . . . . . 9 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
464, 45sylan2b 285 . . . . . . . 8 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
4746ralrimiva 2537 . . . . . . 7 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
48 fun11uni 5252 . . . . . . 7 (∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)) → (Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ∧ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}))
4947, 48syl 14 . . . . . 6 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ∧ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}))
5049simpld 111 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
51 fun11iun.2 . . . . . . 7 𝐵 ∈ V
5251dfiun2 3894 . . . . . 6 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
5352funeqi 5203 . . . . 5 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
5450, 53sylibr 133 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
55 nfra1 2495 . . . . . . 7 𝑥𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵))
56 rsp 2511 . . . . . . . . 9 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑥𝐴 → (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵))))
571eldm2 4796 . . . . . . . . . . 11 (𝑢 ∈ dom 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝐵)
58 f1dm 5392 . . . . . . . . . . . 12 (𝐵:𝐷1-1𝑆 → dom 𝐵 = 𝐷)
5958eleq2d 2234 . . . . . . . . . . 11 (𝐵:𝐷1-1𝑆 → (𝑢 ∈ dom 𝐵𝑢𝐷))
6057, 59bitr3id 193 . . . . . . . . . 10 (𝐵:𝐷1-1𝑆 → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
6160adantr 274 . . . . . . . . 9 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
6256, 61syl6 33 . . . . . . . 8 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑥𝐴 → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷)))
6362imp 123 . . . . . . 7 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑥𝐴) → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
6455, 63rexbida 2459 . . . . . 6 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑥𝐴 𝑢𝐷))
65 eliun 3864 . . . . . . . 8 (⟨𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
6665exbii 1592 . . . . . . 7 (∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
671eldm2 4796 . . . . . . 7 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵)
68 rexcom4 2744 . . . . . . 7 (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
6966, 67, 683bitr4i 211 . . . . . 6 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵)
70 eliun 3864 . . . . . 6 (𝑢 𝑥𝐴 𝐷 ↔ ∃𝑥𝐴 𝑢𝐷)
7164, 69, 703bitr4g 222 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑢 ∈ dom 𝑥𝐴 𝐵𝑢 𝑥𝐴 𝐷))
7271eqrdv 2162 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷)
73 df-fn 5185 . . . 4 ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ↔ (Fun 𝑥𝐴 𝐵 ∧ dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷))
7454, 72, 73sylanbrc 414 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷)
75 rniun 5008 . . . 4 ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
76 f1rn 5388 . . . . . . 7 (𝐵:𝐷1-1𝑆 → ran 𝐵𝑆)
7776adantr 274 . . . . . 6 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝐵𝑆)
7877ralimi 2527 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑥𝐴 ran 𝐵𝑆)
79 iunss 3901 . . . . 5 ( 𝑥𝐴 ran 𝐵𝑆 ↔ ∀𝑥𝐴 ran 𝐵𝑆)
8078, 79sylibr 133 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 ran 𝐵𝑆)
8175, 80eqsstrid 3183 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝑥𝐴 𝐵𝑆)
82 df-f 5186 . . 3 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ↔ ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ∧ ran 𝑥𝐴 𝐵𝑆))
8374, 81, 82sylanbrc 414 . 2 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆)
8449simprd 113 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
8552cnveqi 4773 . . . 4 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
8685funeqi 5203 . . 3 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
8784, 86sylibr 133 . 2 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
88 df-f1 5187 . 2 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆 ↔ ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ∧ Fun 𝑥𝐴 𝐵))
8983, 87, 88sylanbrc 414 1 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1342  wex 1479  wcel 2135  {cab 2150  wral 2442  wrex 2443  Vcvv 2721  wss 3111  cop 3573   cuni 3783   ciun 3860  ccnv 4597  dom cdm 4598  ran crn 4599  Fun wfun 5176   Fn wfn 5177  wf 5178  1-1wf1 5179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator