ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun11iun GIF version

Theorem fun11iun 5258
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
fun11iun.1 (𝑥 = 𝑦𝐵 = 𝐶)
fun11iun.2 𝐵 ∈ V
Assertion
Ref Expression
fun11iun (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑦)

Proof of Theorem fun11iun
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2622 . . . . . . . . . 10 𝑢 ∈ V
2 eqeq1 2094 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑧 = 𝐵𝑢 = 𝐵))
32rexbidv 2381 . . . . . . . . . 10 (𝑧 = 𝑢 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑢 = 𝐵))
41, 3elab 2758 . . . . . . . . 9 (𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑢 = 𝐵)
5 r19.29 2506 . . . . . . . . . 10 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ∃𝑥𝐴 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵))
6 nfv 1466 . . . . . . . . . . . 12 𝑥(Fun 𝑢 ∧ Fun 𝑢)
7 nfre1 2419 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝑧 = 𝐵
87nfab 2233 . . . . . . . . . . . . 13 𝑥{𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
9 nfv 1466 . . . . . . . . . . . . 13 𝑥(𝑢𝑣𝑣𝑢)
108, 9nfralxy 2414 . . . . . . . . . . . 12 𝑥𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)
116, 10nfan 1502 . . . . . . . . . . 11 𝑥((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
12 f1eq1 5195 . . . . . . . . . . . . . . . 16 (𝑢 = 𝐵 → (𝑢:𝐷1-1𝑆𝐵:𝐷1-1𝑆))
1312biimparc 293 . . . . . . . . . . . . . . 15 ((𝐵:𝐷1-1𝑆𝑢 = 𝐵) → 𝑢:𝐷1-1𝑆)
14 df-f1 5007 . . . . . . . . . . . . . . . 16 (𝑢:𝐷1-1𝑆 ↔ (𝑢:𝐷𝑆 ∧ Fun 𝑢))
15 ffun 5150 . . . . . . . . . . . . . . . . 17 (𝑢:𝐷𝑆 → Fun 𝑢)
1615anim1i 333 . . . . . . . . . . . . . . . 16 ((𝑢:𝐷𝑆 ∧ Fun 𝑢) → (Fun 𝑢 ∧ Fun 𝑢))
1714, 16sylbi 119 . . . . . . . . . . . . . . 15 (𝑢:𝐷1-1𝑆 → (Fun 𝑢 ∧ Fun 𝑢))
1813, 17syl 14 . . . . . . . . . . . . . 14 ((𝐵:𝐷1-1𝑆𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun 𝑢))
1918adantlr 461 . . . . . . . . . . . . 13 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun 𝑢))
20 vex 2622 . . . . . . . . . . . . . . . 16 𝑣 ∈ V
21 eqeq1 2094 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝑧 = 𝐵𝑣 = 𝐵))
2221rexbidv 2381 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑣 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑣 = 𝐵))
2320, 22elab 2758 . . . . . . . . . . . . . . 15 (𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑣 = 𝐵)
24 fun11iun.1 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦𝐵 = 𝐶)
2524eqeq2d 2099 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑣 = 𝐵𝑣 = 𝐶))
2625cbvrexv 2591 . . . . . . . . . . . . . . . 16 (∃𝑥𝐴 𝑣 = 𝐵 ↔ ∃𝑦𝐴 𝑣 = 𝐶)
27 r19.29 2506 . . . . . . . . . . . . . . . . . . 19 ((∀𝑦𝐴 (𝐵𝐶𝐶𝐵) ∧ ∃𝑦𝐴 𝑣 = 𝐶) → ∃𝑦𝐴 ((𝐵𝐶𝐶𝐵) ∧ 𝑣 = 𝐶))
28 sseq12 3047 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 = 𝐵𝑣 = 𝐶) → (𝑢𝑣𝐵𝐶))
2928ancoms 264 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 = 𝐶𝑢 = 𝐵) → (𝑢𝑣𝐵𝐶))
30 sseq12 3047 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 = 𝐶𝑢 = 𝐵) → (𝑣𝑢𝐶𝐵))
3129, 30orbi12d 742 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 = 𝐶𝑢 = 𝐵) → ((𝑢𝑣𝑣𝑢) ↔ (𝐵𝐶𝐶𝐵)))
3231biimprcd 158 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵𝐶𝐶𝐵) → ((𝑣 = 𝐶𝑢 = 𝐵) → (𝑢𝑣𝑣𝑢)))
3332expdimp 255 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵𝐶𝐶𝐵) ∧ 𝑣 = 𝐶) → (𝑢 = 𝐵 → (𝑢𝑣𝑣𝑢)))
3433rexlimivw 2485 . . . . . . . . . . . . . . . . . . . 20 (∃𝑦𝐴 ((𝐵𝐶𝐶𝐵) ∧ 𝑣 = 𝐶) → (𝑢 = 𝐵 → (𝑢𝑣𝑣𝑢)))
3534imp 122 . . . . . . . . . . . . . . . . . . 19 ((∃𝑦𝐴 ((𝐵𝐶𝐶𝐵) ∧ 𝑣 = 𝐶) ∧ 𝑢 = 𝐵) → (𝑢𝑣𝑣𝑢))
3627, 35sylan 277 . . . . . . . . . . . . . . . . . 18 (((∀𝑦𝐴 (𝐵𝐶𝐶𝐵) ∧ ∃𝑦𝐴 𝑣 = 𝐶) ∧ 𝑢 = 𝐵) → (𝑢𝑣𝑣𝑢))
3736an32s 535 . . . . . . . . . . . . . . . . 17 (((∀𝑦𝐴 (𝐵𝐶𝐶𝐵) ∧ 𝑢 = 𝐵) ∧ ∃𝑦𝐴 𝑣 = 𝐶) → (𝑢𝑣𝑣𝑢))
3837adantlll 464 . . . . . . . . . . . . . . . 16 ((((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) ∧ ∃𝑦𝐴 𝑣 = 𝐶) → (𝑢𝑣𝑣𝑢))
3926, 38sylan2b 281 . . . . . . . . . . . . . . 15 ((((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) ∧ ∃𝑥𝐴 𝑣 = 𝐵) → (𝑢𝑣𝑣𝑢))
4023, 39sylan2b 281 . . . . . . . . . . . . . 14 ((((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (𝑢𝑣𝑣𝑢))
4140ralrimiva 2446 . . . . . . . . . . . . 13 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
4219, 41jca 300 . . . . . . . . . . . 12 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
4342a1i 9 . . . . . . . . . . 11 (𝑥𝐴 → (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))))
4411, 43rexlimi 2482 . . . . . . . . . 10 (∃𝑥𝐴 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
455, 44syl 14 . . . . . . . . 9 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
464, 45sylan2b 281 . . . . . . . 8 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
4746ralrimiva 2446 . . . . . . 7 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
48 fun11uni 5070 . . . . . . 7 (∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)) → (Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ∧ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}))
4947, 48syl 14 . . . . . 6 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ∧ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}))
5049simpld 110 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
51 fun11iun.2 . . . . . . 7 𝐵 ∈ V
5251dfiun2 3759 . . . . . 6 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
5352funeqi 5022 . . . . 5 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
5450, 53sylibr 132 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
55 nfra1 2409 . . . . . . 7 𝑥𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵))
56 rsp 2423 . . . . . . . . 9 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑥𝐴 → (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵))))
571eldm2 4622 . . . . . . . . . . 11 (𝑢 ∈ dom 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝐵)
58 f1dm 5205 . . . . . . . . . . . 12 (𝐵:𝐷1-1𝑆 → dom 𝐵 = 𝐷)
5958eleq2d 2157 . . . . . . . . . . 11 (𝐵:𝐷1-1𝑆 → (𝑢 ∈ dom 𝐵𝑢𝐷))
6057, 59syl5bbr 192 . . . . . . . . . 10 (𝐵:𝐷1-1𝑆 → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
6160adantr 270 . . . . . . . . 9 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
6256, 61syl6 33 . . . . . . . 8 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑥𝐴 → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷)))
6362imp 122 . . . . . . 7 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑥𝐴) → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
6455, 63rexbida 2375 . . . . . 6 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑥𝐴 𝑢𝐷))
65 eliun 3729 . . . . . . . 8 (⟨𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
6665exbii 1541 . . . . . . 7 (∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
671eldm2 4622 . . . . . . 7 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵)
68 rexcom4 2642 . . . . . . 7 (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
6966, 67, 683bitr4i 210 . . . . . 6 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵)
70 eliun 3729 . . . . . 6 (𝑢 𝑥𝐴 𝐷 ↔ ∃𝑥𝐴 𝑢𝐷)
7164, 69, 703bitr4g 221 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑢 ∈ dom 𝑥𝐴 𝐵𝑢 𝑥𝐴 𝐷))
7271eqrdv 2086 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷)
73 df-fn 5005 . . . 4 ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ↔ (Fun 𝑥𝐴 𝐵 ∧ dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷))
7454, 72, 73sylanbrc 408 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷)
75 rniun 4829 . . . 4 ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
76 f1rn 5201 . . . . . . 7 (𝐵:𝐷1-1𝑆 → ran 𝐵𝑆)
7776adantr 270 . . . . . 6 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝐵𝑆)
7877ralimi 2438 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑥𝐴 ran 𝐵𝑆)
79 iunss 3766 . . . . 5 ( 𝑥𝐴 ran 𝐵𝑆 ↔ ∀𝑥𝐴 ran 𝐵𝑆)
8078, 79sylibr 132 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 ran 𝐵𝑆)
8175, 80syl5eqss 3068 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝑥𝐴 𝐵𝑆)
82 df-f 5006 . . 3 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ↔ ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ∧ ran 𝑥𝐴 𝐵𝑆))
8374, 81, 82sylanbrc 408 . 2 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆)
8449simprd 112 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
8552cnveqi 4599 . . . 4 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
8685funeqi 5022 . . 3 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
8784, 86sylibr 132 . 2 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
88 df-f1 5007 . 2 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆 ↔ ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ∧ Fun 𝑥𝐴 𝐵))
8983, 87, 88sylanbrc 408 1 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 664   = wceq 1289  wex 1426  wcel 1438  {cab 2074  wral 2359  wrex 2360  Vcvv 2619  wss 2997  cop 3444   cuni 3648   ciun 3725  ccnv 4427  dom cdm 4428  ran crn 4429  Fun wfun 4996   Fn wfn 4997  wf 4998  1-1wf1 4999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-iun 3727  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator