| Step | Hyp | Ref
| Expression |
| 1 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑢 ∈ V |
| 2 | | eqeq1 2203 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑢 → (𝑧 = 𝐵 ↔ 𝑢 = 𝐵)) |
| 3 | 2 | rexbidv 2498 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑢 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑢 = 𝐵)) |
| 4 | 1, 3 | elab 2908 |
. . . . . . . . 9
⊢ (𝑢 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑢 = 𝐵) |
| 5 | | r19.29 2634 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ ∃𝑥 ∈ 𝐴 𝑢 = 𝐵) → ∃𝑥 ∈ 𝐴 ((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵)) |
| 6 | | nfv 1542 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(Fun 𝑢 ∧ Fun ◡𝑢) |
| 7 | | nfre1 2540 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑧 = 𝐵 |
| 8 | 7 | nfab 2344 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
| 9 | | nfv 1542 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢) |
| 10 | 8, 9 | nfralxy 2535 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢) |
| 11 | 6, 10 | nfan 1579 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
| 12 | | f1eq1 5458 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝐵 → (𝑢:𝐷–1-1→𝑆 ↔ 𝐵:𝐷–1-1→𝑆)) |
| 13 | 12 | biimparc 299 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵:𝐷–1-1→𝑆 ∧ 𝑢 = 𝐵) → 𝑢:𝐷–1-1→𝑆) |
| 14 | | df-f1 5263 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢:𝐷–1-1→𝑆 ↔ (𝑢:𝐷⟶𝑆 ∧ Fun ◡𝑢)) |
| 15 | | ffun 5410 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢:𝐷⟶𝑆 → Fun 𝑢) |
| 16 | 15 | anim1i 340 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢:𝐷⟶𝑆 ∧ Fun ◡𝑢) → (Fun 𝑢 ∧ Fun ◡𝑢)) |
| 17 | 14, 16 | sylbi 121 |
. . . . . . . . . . . . . . 15
⊢ (𝑢:𝐷–1-1→𝑆 → (Fun 𝑢 ∧ Fun ◡𝑢)) |
| 18 | 13, 17 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝐵:𝐷–1-1→𝑆 ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun ◡𝑢)) |
| 19 | 18 | adantlr 477 |
. . . . . . . . . . . . 13
⊢ (((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun ◡𝑢)) |
| 20 | | vex 2766 |
. . . . . . . . . . . . . . . 16
⊢ 𝑣 ∈ V |
| 21 | | eqeq1 2203 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑣 → (𝑧 = 𝐵 ↔ 𝑣 = 𝐵)) |
| 22 | 21 | rexbidv 2498 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑣 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑣 = 𝐵)) |
| 23 | 20, 22 | elab 2908 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑣 = 𝐵) |
| 24 | | fun11iun.1 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| 25 | 24 | eqeq2d 2208 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝑣 = 𝐵 ↔ 𝑣 = 𝐶)) |
| 26 | 25 | cbvrexv 2730 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥 ∈
𝐴 𝑣 = 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑣 = 𝐶) |
| 27 | | r19.29 2634 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑦 ∈
𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ ∃𝑦 ∈ 𝐴 𝑣 = 𝐶) → ∃𝑦 ∈ 𝐴 ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ 𝑣 = 𝐶)) |
| 28 | | sseq12 3208 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑢 = 𝐵 ∧ 𝑣 = 𝐶) → (𝑢 ⊆ 𝑣 ↔ 𝐵 ⊆ 𝐶)) |
| 29 | 28 | ancoms 268 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑣 = 𝐶 ∧ 𝑢 = 𝐵) → (𝑢 ⊆ 𝑣 ↔ 𝐵 ⊆ 𝐶)) |
| 30 | | sseq12 3208 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑣 = 𝐶 ∧ 𝑢 = 𝐵) → (𝑣 ⊆ 𝑢 ↔ 𝐶 ⊆ 𝐵)) |
| 31 | 29, 30 | orbi12d 794 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 = 𝐶 ∧ 𝑢 = 𝐵) → ((𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢) ↔ (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵))) |
| 32 | 31 | biimprcd 160 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) → ((𝑣 = 𝐶 ∧ 𝑢 = 𝐵) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
| 33 | 32 | expdimp 259 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ 𝑣 = 𝐶) → (𝑢 = 𝐵 → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
| 34 | 33 | rexlimivw 2610 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑦 ∈
𝐴 ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ 𝑣 = 𝐶) → (𝑢 = 𝐵 → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
| 35 | 34 | imp 124 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∃𝑦 ∈
𝐴 ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ 𝑣 = 𝐶) ∧ 𝑢 = 𝐵) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
| 36 | 27, 35 | sylan 283 |
. . . . . . . . . . . . . . . . . 18
⊢
(((∀𝑦 ∈
𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ ∃𝑦 ∈ 𝐴 𝑣 = 𝐶) ∧ 𝑢 = 𝐵) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
| 37 | 36 | an32s 568 |
. . . . . . . . . . . . . . . . 17
⊢
(((∀𝑦 ∈
𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ 𝑢 = 𝐵) ∧ ∃𝑦 ∈ 𝐴 𝑣 = 𝐶) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
| 38 | 37 | adantlll 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) ∧ ∃𝑦 ∈ 𝐴 𝑣 = 𝐶) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
| 39 | 26, 38 | sylan2b 287 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) ∧ ∃𝑥 ∈ 𝐴 𝑣 = 𝐵) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
| 40 | 23, 39 | sylan2b 287 |
. . . . . . . . . . . . . 14
⊢ ((((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
| 41 | 40 | ralrimiva 2570 |
. . . . . . . . . . . . 13
⊢ (((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
| 42 | 19, 41 | jca 306 |
. . . . . . . . . . . 12
⊢ (((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
| 43 | 42 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)))) |
| 44 | 11, 43 | rexlimi 2607 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐴 ((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
| 45 | 5, 44 | syl 14 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ ∃𝑥 ∈ 𝐴 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
| 46 | 4, 45 | sylan2b 287 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
| 47 | 46 | ralrimiva 2570 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∀𝑢 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
| 48 | | fun11uni 5328 |
. . . . . . 7
⊢
(∀𝑢 ∈
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) → (Fun ∪
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ∧ Fun ◡∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵})) |
| 49 | 47, 48 | syl 14 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → (Fun ∪
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ∧ Fun ◡∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵})) |
| 50 | 49 | simpld 112 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → Fun ∪
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) |
| 51 | | fun11iun.2 |
. . . . . . 7
⊢ 𝐵 ∈ V |
| 52 | 51 | dfiun2 3950 |
. . . . . 6
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
| 53 | 52 | funeqi 5279 |
. . . . 5
⊢ (Fun
∪ 𝑥 ∈ 𝐴 𝐵 ↔ Fun ∪
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) |
| 54 | 50, 53 | sylibr 134 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → Fun ∪ 𝑥 ∈ 𝐴 𝐵) |
| 55 | | nfra1 2528 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
| 56 | | rsp 2544 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → (𝑥 ∈ 𝐴 → (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)))) |
| 57 | 1 | eldm2 4864 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ dom 𝐵 ↔ ∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵) |
| 58 | | f1dm 5468 |
. . . . . . . . . . . 12
⊢ (𝐵:𝐷–1-1→𝑆 → dom 𝐵 = 𝐷) |
| 59 | 58 | eleq2d 2266 |
. . . . . . . . . . 11
⊢ (𝐵:𝐷–1-1→𝑆 → (𝑢 ∈ dom 𝐵 ↔ 𝑢 ∈ 𝐷)) |
| 60 | 57, 59 | bitr3id 194 |
. . . . . . . . . 10
⊢ (𝐵:𝐷–1-1→𝑆 → (∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷)) |
| 61 | 60 | adantr 276 |
. . . . . . . . 9
⊢ ((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → (∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷)) |
| 62 | 56, 61 | syl6 33 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → (𝑥 ∈ 𝐴 → (∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷))) |
| 63 | 62 | imp 124 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷)) |
| 64 | 55, 63 | rexbida 2492 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → (∃𝑥 ∈ 𝐴 ∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑢 ∈ 𝐷)) |
| 65 | | eliun 3920 |
. . . . . . . 8
⊢
(〈𝑢, 𝑣〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑢, 𝑣〉 ∈ 𝐵) |
| 66 | 65 | exbii 1619 |
. . . . . . 7
⊢
(∃𝑣〈𝑢, 𝑣〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑣∃𝑥 ∈ 𝐴 〈𝑢, 𝑣〉 ∈ 𝐵) |
| 67 | 1 | eldm2 4864 |
. . . . . . 7
⊢ (𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑣〈𝑢, 𝑣〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 68 | | rexcom4 2786 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 ∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵 ↔ ∃𝑣∃𝑥 ∈ 𝐴 〈𝑢, 𝑣〉 ∈ 𝐵) |
| 69 | 66, 67, 68 | 3bitr4i 212 |
. . . . . 6
⊢ (𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵) |
| 70 | | eliun 3920 |
. . . . . 6
⊢ (𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐷 ↔ ∃𝑥 ∈ 𝐴 𝑢 ∈ 𝐷) |
| 71 | 64, 69, 70 | 3bitr4g 223 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → (𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐷)) |
| 72 | 71 | eqrdv 2194 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐷) |
| 73 | | df-fn 5261 |
. . . 4
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪
𝑥 ∈ 𝐴 𝐷 ↔ (Fun ∪ 𝑥 ∈ 𝐴 𝐵 ∧ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐷)) |
| 74 | 54, 72, 73 | sylanbrc 417 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪
𝑥 ∈ 𝐴 𝐷) |
| 75 | | rniun 5080 |
. . . 4
⊢ ran
∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 |
| 76 | | f1rn 5464 |
. . . . . . 7
⊢ (𝐵:𝐷–1-1→𝑆 → ran 𝐵 ⊆ 𝑆) |
| 77 | 76 | adantr 276 |
. . . . . 6
⊢ ((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ran 𝐵 ⊆ 𝑆) |
| 78 | 77 | ralimi 2560 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∀𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆) |
| 79 | | iunss 3957 |
. . . . 5
⊢ (∪ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ↔ ∀𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆) |
| 80 | 78, 79 | sylibr 134 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆) |
| 81 | 75, 80 | eqsstrid 3229 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ran ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑆) |
| 82 | | df-f 5262 |
. . 3
⊢ (∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷⟶𝑆 ↔ (∪
𝑥 ∈ 𝐴 𝐵 Fn ∪
𝑥 ∈ 𝐴 𝐷 ∧ ran ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑆)) |
| 83 | 74, 81, 82 | sylanbrc 417 |
. 2
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷⟶𝑆) |
| 84 | 49 | simprd 114 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → Fun ◡∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) |
| 85 | 52 | cnveqi 4841 |
. . . 4
⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ◡∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
| 86 | 85 | funeqi 5279 |
. . 3
⊢ (Fun
◡∪
𝑥 ∈ 𝐴 𝐵 ↔ Fun ◡∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) |
| 87 | 84, 86 | sylibr 134 |
. 2
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → Fun ◡∪ 𝑥 ∈ 𝐴 𝐵) |
| 88 | | df-f1 5263 |
. 2
⊢ (∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷–1-1→𝑆 ↔ (∪
𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷⟶𝑆 ∧ Fun ◡∪ 𝑥 ∈ 𝐴 𝐵)) |
| 89 | 83, 87, 88 | sylanbrc 417 |
1
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷–1-1→𝑆) |