Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1f | GIF version |
Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
Ref | Expression |
---|---|
f1f | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5193 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ◡ccnv 4603 Fun wfun 5182 ⟶wf 5184 –1-1→wf1 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-f1 5193 |
This theorem is referenced by: f1rn 5394 f1fn 5395 f1ss 5399 f1ssres 5402 f1of 5432 dff1o5 5441 fsnd 5475 cocan1 5755 f1o2ndf1 6196 brdomg 6714 f1dom2g 6722 f1domg 6724 dom3d 6740 f1imaen2g 6759 2dom 6771 xpdom2 6797 dom0 6804 phplem4dom 6828 isinfinf 6863 infm 6870 updjudhcoinlf 7045 updjudhcoinrg 7046 casef1 7055 djudom 7058 difinfsnlem 7064 difinfsn 7065 fihashf1rn 10702 ennnfonelemrn 12352 reeff1o 13334 pwle2 13878 |
Copyright terms: Public domain | W3C validator |