| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f | GIF version | ||
| Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
| Ref | Expression |
|---|---|
| f1f | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 5323 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4718 Fun wfun 5312 ⟶wf 5314 –1-1→wf1 5315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1 5323 |
| This theorem is referenced by: f1rn 5534 f1fn 5535 f1ss 5539 f1ssres 5542 f1of 5574 dff1o5 5583 fsnd 5618 cocan1 5917 f1o2ndf1 6380 brdomg 6905 f1dom2g 6915 f1domg 6917 dom3d 6933 f1imaen2g 6953 2dom 6966 dom1o 6985 xpdom2 6998 dom0 7007 phplem4dom 7031 isinfinf 7067 infm 7074 updjudhcoinlf 7255 updjudhcoinrg 7256 casef1 7265 djudom 7268 difinfsnlem 7274 difinfsn 7275 seqf1oglem1 10749 fihashf1rn 11018 ennnfonelemrn 12998 reeff1o 15455 ushgruhgr 15888 umgr0e 15926 usgredgssen 15968 ausgrusgrben 15974 usgrss 15983 uspgrupgr 15987 usgrumgr 15990 usgrislfuspgrdom 15996 ushgredgedg 16032 ushgredgedgloop 16034 1dom1el 16378 3dom 16381 pwle2 16393 |
| Copyright terms: Public domain | W3C validator |