![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1f | GIF version |
Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
Ref | Expression |
---|---|
f1f | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5259 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ◡ccnv 4658 Fun wfun 5248 ⟶wf 5250 –1-1→wf1 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f1 5259 |
This theorem is referenced by: f1rn 5460 f1fn 5461 f1ss 5465 f1ssres 5468 f1of 5500 dff1o5 5509 fsnd 5543 cocan1 5830 f1o2ndf1 6281 brdomg 6802 f1dom2g 6810 f1domg 6812 dom3d 6828 f1imaen2g 6847 2dom 6859 xpdom2 6885 dom0 6894 phplem4dom 6918 isinfinf 6953 infm 6960 updjudhcoinlf 7139 updjudhcoinrg 7140 casef1 7149 djudom 7152 difinfsnlem 7158 difinfsn 7159 seqf1oglem1 10590 fihashf1rn 10859 ennnfonelemrn 12576 reeff1o 14908 1dom1el 15483 pwle2 15489 |
Copyright terms: Public domain | W3C validator |