| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f | GIF version | ||
| Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
| Ref | Expression |
|---|---|
| f1f | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 5282 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4679 Fun wfun 5271 ⟶wf 5273 –1-1→wf1 5274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1 5282 |
| This theorem is referenced by: f1rn 5491 f1fn 5492 f1ss 5496 f1ssres 5499 f1of 5531 dff1o5 5540 fsnd 5575 cocan1 5866 f1o2ndf1 6324 brdomg 6847 f1dom2g 6857 f1domg 6859 dom3d 6875 f1imaen2g 6895 2dom 6908 xpdom2 6938 dom0 6947 phplem4dom 6971 isinfinf 7006 infm 7013 updjudhcoinlf 7194 updjudhcoinrg 7195 casef1 7204 djudom 7207 difinfsnlem 7213 difinfsn 7214 seqf1oglem1 10677 fihashf1rn 10946 ennnfonelemrn 12840 reeff1o 15295 ushgruhgr 15726 umgr0e 15761 1dom1el 16041 dom1o 16043 pwle2 16050 |
| Copyright terms: Public domain | W3C validator |