![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1f | GIF version |
Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
Ref | Expression |
---|---|
f1f | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5260 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ◡ccnv 4659 Fun wfun 5249 ⟶wf 5251 –1-1→wf1 5252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f1 5260 |
This theorem is referenced by: f1rn 5461 f1fn 5462 f1ss 5466 f1ssres 5469 f1of 5501 dff1o5 5510 fsnd 5544 cocan1 5831 f1o2ndf1 6283 brdomg 6804 f1dom2g 6812 f1domg 6814 dom3d 6830 f1imaen2g 6849 2dom 6861 xpdom2 6887 dom0 6896 phplem4dom 6920 isinfinf 6955 infm 6962 updjudhcoinlf 7141 updjudhcoinrg 7142 casef1 7151 djudom 7154 difinfsnlem 7160 difinfsn 7161 seqf1oglem1 10593 fihashf1rn 10862 ennnfonelemrn 12579 reeff1o 14949 1dom1el 15553 pwle2 15559 |
Copyright terms: Public domain | W3C validator |