| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f | GIF version | ||
| Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
| Ref | Expression |
|---|---|
| f1f | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 5264 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4663 Fun wfun 5253 ⟶wf 5255 –1-1→wf1 5256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1 5264 |
| This theorem is referenced by: f1rn 5467 f1fn 5468 f1ss 5472 f1ssres 5475 f1of 5507 dff1o5 5516 fsnd 5550 cocan1 5837 f1o2ndf1 6295 brdomg 6816 f1dom2g 6824 f1domg 6826 dom3d 6842 f1imaen2g 6861 2dom 6873 xpdom2 6899 dom0 6908 phplem4dom 6932 isinfinf 6967 infm 6974 updjudhcoinlf 7155 updjudhcoinrg 7156 casef1 7165 djudom 7168 difinfsnlem 7174 difinfsn 7175 seqf1oglem1 10628 fihashf1rn 10897 ennnfonelemrn 12661 reeff1o 15093 1dom1el 15721 pwle2 15729 |
| Copyright terms: Public domain | W3C validator |