ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1f GIF version

Theorem f1f 5460
Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.)
Assertion
Ref Expression
f1f (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)

Proof of Theorem f1f
StepHypRef Expression
1 df-f1 5260 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
21simplbi 274 1 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  ccnv 4659  Fun wfun 5249  wf 5251  1-1wf1 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f1 5260
This theorem is referenced by:  f1rn  5461  f1fn  5462  f1ss  5466  f1ssres  5469  f1of  5501  dff1o5  5510  fsnd  5544  cocan1  5831  f1o2ndf1  6283  brdomg  6804  f1dom2g  6812  f1domg  6814  dom3d  6830  f1imaen2g  6849  2dom  6861  xpdom2  6887  dom0  6896  phplem4dom  6920  isinfinf  6955  infm  6962  updjudhcoinlf  7141  updjudhcoinrg  7142  casef1  7151  djudom  7154  difinfsnlem  7160  difinfsn  7161  seqf1oglem1  10593  fihashf1rn  10862  ennnfonelemrn  12579  reeff1o  14949  1dom1el  15553  pwle2  15559
  Copyright terms: Public domain W3C validator