| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f | GIF version | ||
| Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
| Ref | Expression |
|---|---|
| f1f | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 5319 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4715 Fun wfun 5308 ⟶wf 5310 –1-1→wf1 5311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1 5319 |
| This theorem is referenced by: f1rn 5528 f1fn 5529 f1ss 5533 f1ssres 5536 f1of 5568 dff1o5 5577 fsnd 5612 cocan1 5904 f1o2ndf1 6364 brdomg 6887 f1dom2g 6897 f1domg 6899 dom3d 6915 f1imaen2g 6935 2dom 6948 xpdom2 6978 dom0 6987 phplem4dom 7011 isinfinf 7047 infm 7054 updjudhcoinlf 7235 updjudhcoinrg 7236 casef1 7245 djudom 7248 difinfsnlem 7254 difinfsn 7255 seqf1oglem1 10728 fihashf1rn 10997 ennnfonelemrn 12976 reeff1o 15432 ushgruhgr 15865 umgr0e 15903 usgredgssen 15945 ausgrusgrben 15951 usgrss 15960 uspgrupgr 15964 usgrumgr 15967 usgrislfuspgrdom 15973 ushgredgedg 16009 ushgredgedgloop 16011 1dom1el 16284 dom1o 16286 pwle2 16295 |
| Copyright terms: Public domain | W3C validator |