| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1f | GIF version | ||
| Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.) |
| Ref | Expression |
|---|---|
| f1f | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 5263 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ◡ccnv 4662 Fun wfun 5252 ⟶wf 5254 –1-1→wf1 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1 5263 |
| This theorem is referenced by: f1rn 5464 f1fn 5465 f1ss 5469 f1ssres 5472 f1of 5504 dff1o5 5513 fsnd 5547 cocan1 5834 f1o2ndf1 6286 brdomg 6807 f1dom2g 6815 f1domg 6817 dom3d 6833 f1imaen2g 6852 2dom 6864 xpdom2 6890 dom0 6899 phplem4dom 6923 isinfinf 6958 infm 6965 updjudhcoinlf 7146 updjudhcoinrg 7147 casef1 7156 djudom 7159 difinfsnlem 7165 difinfsn 7166 seqf1oglem1 10611 fihashf1rn 10880 ennnfonelemrn 12636 reeff1o 15009 1dom1el 15637 pwle2 15643 |
| Copyright terms: Public domain | W3C validator |