ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbprc GIF version

Theorem csbprc 3454
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
csbprc 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)

Proof of Theorem csbprc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3046 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 sbcex 2959 . . . . . . 7 ([𝐴 / 𝑥]𝑦𝐵𝐴 ∈ V)
32con3i 622 . . . . . 6 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝑦𝐵)
43pm2.21d 609 . . . . 5 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 → ⊥))
5 falim 1357 . . . . 5 (⊥ → [𝐴 / 𝑥]𝑦𝐵)
64, 5impbid1 141 . . . 4 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 ↔ ⊥))
76abbidv 2284 . . 3 𝐴 ∈ V → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ⊥})
8 fal 1350 . . . 4 ¬ ⊥
98abf 3452 . . 3 {𝑦 ∣ ⊥} = ∅
107, 9eqtrdi 2215 . 2 𝐴 ∈ V → {𝑦[𝐴 / 𝑥]𝑦𝐵} = ∅)
111, 10syl5eq 2211 1 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wfal 1348  wcel 2136  {cab 2151  Vcvv 2726  [wsbc 2951  csb 3045  c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator