| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbprc | GIF version | ||
| Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3095 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | sbcex 3008 | . . . . . . 7 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 2 | con3i 633 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝑦 ∈ 𝐵) |
| 4 | 3 | pm2.21d 620 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → ⊥)) |
| 5 | falim 1387 | . . . . 5 ⊢ (⊥ → [𝐴 / 𝑥]𝑦 ∈ 𝐵) | |
| 6 | 4, 5 | impbid1 142 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ ⊥)) |
| 7 | 6 | abbidv 2324 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ ⊥}) |
| 8 | fal 1380 | . . . 4 ⊢ ¬ ⊥ | |
| 9 | 8 | abf 3505 | . . 3 ⊢ {𝑦 ∣ ⊥} = ∅ |
| 10 | 7, 9 | eqtrdi 2255 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = ∅) |
| 11 | 1, 10 | eqtrid 2251 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ⊥wfal 1378 ∈ wcel 2177 {cab 2192 Vcvv 2773 [wsbc 2999 ⦋csb 3094 ∅c0 3461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-in 3173 df-ss 3180 df-nul 3462 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |