Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbprc | GIF version |
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3032 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | sbcex 2945 | . . . . . . 7 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | 2 | con3i 622 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝑦 ∈ 𝐵) |
4 | 3 | pm2.21d 609 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → ⊥)) |
5 | falim 1349 | . . . . 5 ⊢ (⊥ → [𝐴 / 𝑥]𝑦 ∈ 𝐵) | |
6 | 4, 5 | impbid1 141 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ ⊥)) |
7 | 6 | abbidv 2275 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ ⊥}) |
8 | fal 1342 | . . . 4 ⊢ ¬ ⊥ | |
9 | 8 | abf 3438 | . . 3 ⊢ {𝑦 ∣ ⊥} = ∅ |
10 | 7, 9 | eqtrdi 2206 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = ∅) |
11 | 1, 10 | syl5eq 2202 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1335 ⊥wfal 1340 ∈ wcel 2128 {cab 2143 Vcvv 2712 [wsbc 2937 ⦋csb 3031 ∅c0 3395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-in 3108 df-ss 3115 df-nul 3396 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |