ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbprc GIF version

Theorem csbprc 3537
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
csbprc 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)

Proof of Theorem csbprc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3125 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 sbcex 3037 . . . . . . 7 ([𝐴 / 𝑥]𝑦𝐵𝐴 ∈ V)
32con3i 635 . . . . . 6 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝑦𝐵)
43pm2.21d 622 . . . . 5 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 → ⊥))
5 falim 1409 . . . . 5 (⊥ → [𝐴 / 𝑥]𝑦𝐵)
64, 5impbid1 142 . . . 4 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 ↔ ⊥))
76abbidv 2347 . . 3 𝐴 ∈ V → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ⊥})
8 fal 1402 . . . 4 ¬ ⊥
98abf 3535 . . 3 {𝑦 ∣ ⊥} = ∅
107, 9eqtrdi 2278 . 2 𝐴 ∈ V → {𝑦[𝐴 / 𝑥]𝑦𝐵} = ∅)
111, 10eqtrid 2274 1 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1395  wfal 1400  wcel 2200  {cab 2215  Vcvv 2799  [wsbc 3028  csb 3124  c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator