| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbsbv | GIF version | ||
| Description: This is a version of hbsb 1977 with an extra distinct variable constraint, on 𝑧 and 𝑥. (Contributed by Jim Kingdon, 25-Dec-2017.) |
| Ref | Expression |
|---|---|
| hbsbv.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
| Ref | Expression |
|---|---|
| hbsbv | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 1786 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 2 | ax-17 1549 | . . . 4 ⊢ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) | |
| 3 | hbsbv.1 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 4 | 2, 3 | hbim 1568 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) → ∀𝑧(𝑥 = 𝑦 → 𝜑)) |
| 5 | 2, 3 | hban 1570 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑧(𝑥 = 𝑦 ∧ 𝜑)) |
| 6 | 5 | hbex 1659 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑧∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 7 | 4, 6 | hban 1570 | . 2 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ∀𝑧((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 8 | 1, 7 | hbxfrbi 1495 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1515 [wsb 1785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 |
| This theorem is referenced by: sbco2vlem 1972 2sb5rf 2017 2sb6rf 2018 |
| Copyright terms: Public domain | W3C validator |