Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbsbv | GIF version |
Description: This is a version of hbsb 1942 with an extra distinct variable constraint, on 𝑧 and 𝑥. (Contributed by Jim Kingdon, 25-Dec-2017.) |
Ref | Expression |
---|---|
hbsbv.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
Ref | Expression |
---|---|
hbsbv | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sb 1756 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
2 | ax-17 1519 | . . . 4 ⊢ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) | |
3 | hbsbv.1 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
4 | 2, 3 | hbim 1538 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) → ∀𝑧(𝑥 = 𝑦 → 𝜑)) |
5 | 2, 3 | hban 1540 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑧(𝑥 = 𝑦 ∧ 𝜑)) |
6 | 5 | hbex 1629 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑧∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
7 | 4, 6 | hban 1540 | . 2 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ∀𝑧((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
8 | 1, 7 | hbxfrbi 1465 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1346 ∃wex 1485 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: sbco2vlem 1937 2sb5rf 1982 2sb6rf 1983 |
Copyright terms: Public domain | W3C validator |