| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > hbsbv | GIF version | ||
| Description: This is a version of hbsb 1968 with an extra distinct variable constraint, on 𝑧 and 𝑥. (Contributed by Jim Kingdon, 25-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| hbsbv.1 | ⊢ (𝜑 → ∀𝑧𝜑) | 
| Ref | Expression | 
|---|---|
| hbsbv | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-sb 1777 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 2 | ax-17 1540 | . . . 4 ⊢ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) | |
| 3 | hbsbv.1 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 4 | 2, 3 | hbim 1559 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) → ∀𝑧(𝑥 = 𝑦 → 𝜑)) | 
| 5 | 2, 3 | hban 1561 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑧(𝑥 = 𝑦 ∧ 𝜑)) | 
| 6 | 5 | hbex 1650 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑧∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | 
| 7 | 4, 6 | hban 1561 | . 2 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ∀𝑧((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 8 | 1, 7 | hbxfrbi 1486 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 | 
| This theorem is referenced by: sbco2vlem 1963 2sb5rf 2008 2sb6rf 2009 | 
| Copyright terms: Public domain | W3C validator |