Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mopick2 | GIF version |
Description: "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 1619. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
mopick2 | ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓) ∧ ∃𝑥(𝜑 ∧ 𝜒)) → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbmo1 2052 | . . . 4 ⊢ (∃*𝑥𝜑 → ∀𝑥∃*𝑥𝜑) | |
2 | hbe1 1483 | . . . 4 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∀𝑥∃𝑥(𝜑 ∧ 𝜓)) | |
3 | 1, 2 | hban 1535 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓))) |
4 | mopick 2092 | . . . . . 6 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
5 | 4 | ancld 323 | . . . . 5 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → (𝜑 ∧ 𝜓))) |
6 | 5 | anim1d 334 | . . . 4 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒))) |
7 | df-3an 970 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
8 | 6, 7 | syl6ibr 161 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜓 ∧ 𝜒))) |
9 | 3, 8 | eximdh 1599 | . 2 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (∃𝑥(𝜑 ∧ 𝜒) → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒))) |
10 | 9 | 3impia 1190 | 1 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓) ∧ ∃𝑥(𝜑 ∧ 𝜒)) → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 ∃wex 1480 ∃*wmo 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |