| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mopick2 | GIF version | ||
| Description: "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 1655. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| mopick2 | ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓) ∧ ∃𝑥(𝜑 ∧ 𝜒)) → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbmo1 2093 | . . . 4 ⊢ (∃*𝑥𝜑 → ∀𝑥∃*𝑥𝜑) | |
| 2 | hbe1 1519 | . . . 4 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∀𝑥∃𝑥(𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | hban 1571 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓))) |
| 4 | mopick 2133 | . . . . . 6 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
| 5 | 4 | ancld 325 | . . . . 5 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → (𝜑 ∧ 𝜓))) |
| 6 | 5 | anim1d 336 | . . . 4 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒))) |
| 7 | df-3an 983 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 8 | 6, 7 | imbitrrdi 162 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ((𝜑 ∧ 𝜒) → (𝜑 ∧ 𝜓 ∧ 𝜒))) |
| 9 | 3, 8 | eximdh 1635 | . 2 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (∃𝑥(𝜑 ∧ 𝜒) → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒))) |
| 10 | 9 | 3impia 1203 | 1 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓) ∧ ∃𝑥(𝜑 ∧ 𝜒)) → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 ∃wex 1516 ∃*wmo 2056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |