ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupicka GIF version

Theorem eupicka 2116
Description: Version of eupick 2115 with closed formulas. (Contributed by NM, 6-Sep-2008.)
Assertion
Ref Expression
eupicka ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))

Proof of Theorem eupicka
StepHypRef Expression
1 hbeu1 2046 . . 3 (∃!𝑥𝜑 → ∀𝑥∃!𝑥𝜑)
2 hbe1 1505 . . 3 (∃𝑥(𝜑𝜓) → ∀𝑥𝑥(𝜑𝜓))
31, 2hban 1557 . 2 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)))
4 eupick 2115 . 2 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
53, 4alrimih 1479 1 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1361  wex 1502  ∃!weu 2036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040
This theorem is referenced by:  eupickbi  2118
  Copyright terms: Public domain W3C validator