ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupicka GIF version

Theorem eupicka 2158
Description: Version of eupick 2157 with closed formulas. (Contributed by NM, 6-Sep-2008.)
Assertion
Ref Expression
eupicka ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))

Proof of Theorem eupicka
StepHypRef Expression
1 hbeu1 2087 . . 3 (∃!𝑥𝜑 → ∀𝑥∃!𝑥𝜑)
2 hbe1 1541 . . 3 (∃𝑥(𝜑𝜓) → ∀𝑥𝑥(𝜑𝜓))
31, 2hban 1593 . 2 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)))
4 eupick 2157 . 2 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
53, 4alrimih 1515 1 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393  wex 1538  ∃!weu 2077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by:  eupickbi  2160
  Copyright terms: Public domain W3C validator