| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eupicka | GIF version | ||
| Description: Version of eupick 2157 with closed formulas. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| eupicka | ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbeu1 2087 | . . 3 ⊢ (∃!𝑥𝜑 → ∀𝑥∃!𝑥𝜑) | |
| 2 | hbe1 1541 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∀𝑥∃𝑥(𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | hban 1593 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓))) |
| 4 | eupick 2157 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | alrimih 1515 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 ∃wex 1538 ∃!weu 2077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 |
| This theorem is referenced by: eupickbi 2160 |
| Copyright terms: Public domain | W3C validator |