| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eupicka | GIF version | ||
| Description: Version of eupick 2124 with closed formulas. (Contributed by NM, 6-Sep-2008.) | 
| Ref | Expression | 
|---|---|
| eupicka | ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbeu1 2055 | . . 3 ⊢ (∃!𝑥𝜑 → ∀𝑥∃!𝑥𝜑) | |
| 2 | hbe1 1509 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∀𝑥∃𝑥(𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | hban 1561 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓))) | 
| 4 | eupick 2124 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | alrimih 1483 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 ∃!weu 2045 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 | 
| This theorem is referenced by: eupickbi 2127 | 
| Copyright terms: Public domain | W3C validator |