| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nf3 | GIF version | ||
| Description: An alternate definition of df-nf 1475. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nf3 | ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf2 1682 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 2 | nfe1 1510 | . . . 4 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
| 3 | 2 | nfri 1533 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
| 4 | 3 | 19.21h 1571 | . 2 ⊢ (∀𝑥(∃𝑥𝜑 → 𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 5 | 1, 4 | bitr4i 187 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: hbe1a 2042 eusv2nf 4491 |
| Copyright terms: Public domain | W3C validator |