![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > al2imi | GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2imi.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | alimi 1389 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒)) |
3 | alim 1391 | . 2 ⊢ (∀𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒)) | |
4 | 2, 3 | syl 14 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1287 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-5 1381 ax-gen 1383 |
This theorem is referenced by: alanimi 1393 alimdh 1401 albi 1402 19.30dc 1563 19.33b2 1565 hbnt 1588 ax10o 1650 spimth 1670 sbi1v 1819 ralim 2434 ceqsalt 2645 intss 3707 |
Copyright terms: Public domain | W3C validator |