| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbh | GIF version | ||
| Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 17-Oct-2004.) |
| Ref | Expression |
|---|---|
| sbh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| sbh | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb1 1788 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 2 | sbh.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 2 | 19.41h 1707 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ (∃𝑥 𝑥 = 𝑦 ∧ 𝜑)) |
| 4 | 1, 3 | sylib 122 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → (∃𝑥 𝑥 = 𝑦 ∧ 𝜑)) |
| 5 | 4 | simprd 114 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → 𝜑) |
| 6 | stdpc4 1797 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 7 | 2, 6 | syl 14 | . 2 ⊢ (𝜑 → [𝑦 / 𝑥]𝜑) |
| 8 | 5, 7 | impbii 126 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1370 ∃wex 1514 [wsb 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-i9 1552 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 |
| This theorem is referenced by: sbf 1799 sb6x 1801 nfs1f 1802 hbs1f 1803 sbid2h 1871 sblimv 1917 sbrim 1983 sbrbif 1989 elsb1 2182 elsb2 2183 |
| Copyright terms: Public domain | W3C validator |