| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbh | GIF version | ||
| Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 17-Oct-2004.) | 
| Ref | Expression | 
|---|---|
| sbh.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| Ref | Expression | 
|---|---|
| sbh | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sb1 1780 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 2 | sbh.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 2 | 19.41h 1699 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ (∃𝑥 𝑥 = 𝑦 ∧ 𝜑)) | 
| 4 | 1, 3 | sylib 122 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → (∃𝑥 𝑥 = 𝑦 ∧ 𝜑)) | 
| 5 | 4 | simprd 114 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → 𝜑) | 
| 6 | stdpc4 1789 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 7 | 2, 6 | syl 14 | . 2 ⊢ (𝜑 → [𝑦 / 𝑥]𝜑) | 
| 8 | 5, 7 | impbii 126 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 | 
| This theorem is referenced by: sbf 1791 sb6x 1793 nfs1f 1794 hbs1f 1795 sbid2h 1863 sblimv 1909 sbrim 1975 sbrbif 1981 elsb1 2174 elsb2 2175 | 
| Copyright terms: Public domain | W3C validator |