![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbh | GIF version |
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 17-Oct-2004.) |
Ref | Expression |
---|---|
sbh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
sbh | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1696 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
2 | sbh.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 2 | 19.41h 1620 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ (∃𝑥 𝑥 = 𝑦 ∧ 𝜑)) |
4 | 1, 3 | sylib 120 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → (∃𝑥 𝑥 = 𝑦 ∧ 𝜑)) |
5 | 4 | simprd 112 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → 𝜑) |
6 | stdpc4 1705 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
7 | 2, 6 | syl 14 | . 2 ⊢ (𝜑 → [𝑦 / 𝑥]𝜑) |
8 | 5, 7 | impbii 124 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1287 ∃wex 1426 [wsb 1692 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-i9 1468 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-sb 1693 |
This theorem is referenced by: sbf 1707 sb6x 1709 nfs1f 1710 hbs1f 1711 sbid2h 1777 sblimv 1822 sbrim 1878 sbrbif 1884 elsb3 1900 elsb4 1901 |
Copyright terms: Public domain | W3C validator |