ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbh GIF version

Theorem sbh 1764
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 17-Oct-2004.)
Hypothesis
Ref Expression
sbh.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
sbh ([𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbh
StepHypRef Expression
1 sb1 1754 . . . 4 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
2 sbh.1 . . . . 5 (𝜑 → ∀𝑥𝜑)
3219.41h 1673 . . . 4 (∃𝑥(𝑥 = 𝑦𝜑) ↔ (∃𝑥 𝑥 = 𝑦𝜑))
41, 3sylib 121 . . 3 ([𝑦 / 𝑥]𝜑 → (∃𝑥 𝑥 = 𝑦𝜑))
54simprd 113 . 2 ([𝑦 / 𝑥]𝜑𝜑)
6 stdpc4 1763 . . 3 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
72, 6syl 14 . 2 (𝜑 → [𝑦 / 𝑥]𝜑)
85, 7impbii 125 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341  wex 1480  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  sbf  1765  sb6x  1767  nfs1f  1768  hbs1f  1769  sbid2h  1837  sblimv  1882  sbrim  1944  sbrbif  1950  elsb1  2143  elsb2  2144
  Copyright terms: Public domain W3C validator