Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbh | GIF version |
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 17-Oct-2004.) |
Ref | Expression |
---|---|
sbh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
sbh | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1754 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
2 | sbh.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 2 | 19.41h 1673 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ (∃𝑥 𝑥 = 𝑦 ∧ 𝜑)) |
4 | 1, 3 | sylib 121 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → (∃𝑥 𝑥 = 𝑦 ∧ 𝜑)) |
5 | 4 | simprd 113 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → 𝜑) |
6 | stdpc4 1763 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
7 | 2, 6 | syl 14 | . 2 ⊢ (𝜑 → [𝑦 / 𝑥]𝜑) |
8 | 5, 7 | impbii 125 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 ∃wex 1480 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sbf 1765 sb6x 1767 nfs1f 1768 hbs1f 1769 sbid2h 1837 sblimv 1882 sbrim 1944 sbrbif 1950 elsb1 2143 elsb2 2144 |
Copyright terms: Public domain | W3C validator |