![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.21nd | GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.) |
Ref | Expression |
---|---|
pm5.21nd.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
pm5.21nd.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
pm5.21nd.3 | ⊢ (𝜃 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | pm5.21nd.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
4 | 3 | ex 114 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
5 | pm5.21nd.3 | . . 3 ⊢ (𝜃 → (𝜓 ↔ 𝜒)) | |
6 | 5 | a1i 9 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 ↔ 𝜒))) |
7 | 2, 4, 6 | pm5.21ndd 657 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ideqg 4600 fvelimab 5373 releldm2 5969 relelec 6346 fzrev3 9562 elfzp12 9574 eltg 11813 eltg2 11814 |
Copyright terms: Public domain | W3C validator |