| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21nd | GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.) |
| Ref | Expression |
|---|---|
| pm5.21nd.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| pm5.21nd.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| pm5.21nd.3 | ⊢ (𝜃 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21nd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | pm5.21nd.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | pm5.21nd.3 | . . 3 ⊢ (𝜃 → (𝜓 ↔ 𝜒)) | |
| 6 | 5 | a1i 9 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 ↔ 𝜒))) |
| 7 | 2, 4, 6 | pm5.21ndd 706 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ideqg 4817 fvelimab 5617 releldm2 6243 relelec 6634 fzrev3 10162 elfzp12 10174 eqgval 13353 eltg 14288 eltg2 14289 cncnp2m 14467 |
| Copyright terms: Public domain | W3C validator |