![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssin | GIF version |
Description: Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssin | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3206 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
2 | 1 | imbi2i 225 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
3 | 2 | albii 1414 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
4 | jcab 573 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
5 | 4 | albii 1414 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
6 | 19.26 1425 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
7 | 3, 5, 6 | 3bitrri 206 | . 2 ⊢ ((∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
8 | dfss2 3036 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
9 | dfss2 3036 | . . 3 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
10 | 8, 9 | anbi12i 451 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
11 | dfss2 3036 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∩ 𝐶) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∩ 𝐶))) | |
12 | 7, 10, 11 | 3bitr4i 211 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1297 ∈ wcel 1448 ∩ cin 3020 ⊆ wss 3021 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-in 3027 df-ss 3034 |
This theorem is referenced by: ssini 3246 ssind 3247 uneqin 3274 trin 3976 pwin 4142 peano5 4450 fin 5245 tgval 12000 eltg3i 12007 innei 12114 cnptoprest2 12190 |
Copyright terms: Public domain | W3C validator |