ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssin GIF version

Theorem ssin 3397
Description: Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ssin ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3358 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
21imbi2i 226 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
32albii 1494 . . 3 (∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ ∀𝑥(𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
4 jcab 603 . . . 4 ((𝑥𝐴 → (𝑥𝐵𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)))
54albii 1494 . . 3 (∀𝑥(𝑥𝐴 → (𝑥𝐵𝑥𝐶)) ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)))
6 19.26 1505 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)) ↔ (∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐴𝑥𝐶)))
73, 5, 63bitrri 207 . 2 ((∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐴𝑥𝐶)) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
8 ssalel 3183 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
9 ssalel 3183 . . 3 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
108, 9anbi12i 460 . 2 ((𝐴𝐵𝐴𝐶) ↔ (∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐴𝑥𝐶)))
11 ssalel 3183 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
127, 10, 113bitr4i 212 1 ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371  wcel 2177  cin 3167  wss 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3174  df-ss 3181
This theorem is referenced by:  ssini  3398  ssind  3399  uneqin  3426  trin  4157  pwin  4334  peano5  4651  fin  5471  tgval  13144  eltg3i  14578  innei  14685  cnptoprest2  14762
  Copyright terms: Public domain W3C validator