ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raaan GIF version

Theorem raaan 3574
Description: Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.)
Hypotheses
Ref Expression
raaan.1 𝑦𝜑
raaan.2 𝑥𝜓
Assertion
Ref Expression
raaan (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem raaan
StepHypRef Expression
1 raaan.1 . . . 4 𝑦𝜑
2 raaan.2 . . . 4 𝑥𝜓
31, 2raaanlem 3573 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
43pm5.74i 180 . 2 ((∃𝑥 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 (𝜑𝜓)) ↔ (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
5 ralm 3572 . 2 ((∃𝑥 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 (𝜑𝜓)) ↔ ∀𝑥𝐴𝑦𝐴 (𝜑𝜓))
6 jcab 603 . . 3 ((∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)) ↔ ((∃𝑥 𝑥𝐴 → ∀𝑥𝐴 𝜑) ∧ (∃𝑥 𝑥𝐴 → ∀𝑦𝐴 𝜓)))
7 ralm 3572 . . . 4 ((∃𝑥 𝑥𝐴 → ∀𝑥𝐴 𝜑) ↔ ∀𝑥𝐴 𝜑)
8 eleq1 2270 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
98cbvexv 1943 . . . . . 6 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
109imbi1i 238 . . . . 5 ((∃𝑥 𝑥𝐴 → ∀𝑦𝐴 𝜓) ↔ (∃𝑦 𝑦𝐴 → ∀𝑦𝐴 𝜓))
11 ralm 3572 . . . . 5 ((∃𝑦 𝑦𝐴 → ∀𝑦𝐴 𝜓) ↔ ∀𝑦𝐴 𝜓)
1210, 11bitri 184 . . . 4 ((∃𝑥 𝑥𝐴 → ∀𝑦𝐴 𝜓) ↔ ∀𝑦𝐴 𝜓)
137, 12anbi12i 460 . . 3 (((∃𝑥 𝑥𝐴 → ∀𝑥𝐴 𝜑) ∧ (∃𝑥 𝑥𝐴 → ∀𝑦𝐴 𝜓)) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓))
146, 13bitri 184 . 2 ((∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓))
154, 5, 143bitr3i 210 1 (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wnf 1484  wex 1516  wcel 2178  wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491
This theorem is referenced by:  raaanv  3575
  Copyright terms: Public domain W3C validator