ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omniwomnimkv GIF version

Theorem omniwomnimkv 7143
Description: A set is omniscient if and only if it is weakly omniscient and Markov. The case 𝐴 = ω says that LPO WLPO MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
omniwomnimkv (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov))

Proof of Theorem omniwomnimkv
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2741 . 2 (𝐴 ∈ Omni → 𝐴 ∈ V)
2 simpl 108 . . 3 ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) → 𝐴 ∈ WOmni)
32elexd 2743 . 2 ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) → 𝐴 ∈ V)
4 1n0 6411 . . . . . . . . . . . . . . 15 1o ≠ ∅
54nesymi 2386 . . . . . . . . . . . . . 14 ¬ ∅ = 1o
6 eqeq1 2177 . . . . . . . . . . . . . 14 ((𝑓𝑥) = ∅ → ((𝑓𝑥) = 1o ↔ ∅ = 1o))
75, 6mtbiri 670 . . . . . . . . . . . . 13 ((𝑓𝑥) = ∅ → ¬ (𝑓𝑥) = 1o)
87reximi 2567 . . . . . . . . . . . 12 (∃𝑥𝐴 (𝑓𝑥) = ∅ → ∃𝑥𝐴 ¬ (𝑓𝑥) = 1o)
9 rexnalim 2459 . . . . . . . . . . . 12 (∃𝑥𝐴 ¬ (𝑓𝑥) = 1o → ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o)
108, 9syl 14 . . . . . . . . . . 11 (∃𝑥𝐴 (𝑓𝑥) = ∅ → ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o)
1110orim1i 755 . . . . . . . . . 10 ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))
1211orcomd 724 . . . . . . . . 9 ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o))
13 df-dc 830 . . . . . . . . 9 (DECID𝑥𝐴 (𝑓𝑥) = 1o ↔ (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o))
1412, 13sylibr 133 . . . . . . . 8 ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) → DECID𝑥𝐴 (𝑓𝑥) = 1o)
1514adantl 275 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → DECID𝑥𝐴 (𝑓𝑥) = 1o)
16 simpr 109 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))
1716orcomd 724 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∃𝑥𝐴 (𝑓𝑥) = ∅))
1817ord 719 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))
1915, 18jca 304 . . . . . 6 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
20 simprl 526 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → DECID𝑥𝐴 (𝑓𝑥) = 1o)
2120, 13sylib 121 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o))
22 simprr 527 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))
2322orim2d 783 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → ((∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∃𝑥𝐴 (𝑓𝑥) = ∅)))
2421, 23mpd 13 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∃𝑥𝐴 (𝑓𝑥) = ∅))
2524orcomd 724 . . . . . 6 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))
2619, 25impbida 591 . . . . 5 ((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) → ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) ↔ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
2726pm5.74da 441 . . . 4 (𝐴 ∈ V → ((𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) ↔ (𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
2827albidv 1817 . . 3 (𝐴 ∈ V → (∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) ↔ ∀𝑓(𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
29 isomni 7112 . . 3 (𝐴 ∈ V → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))))
30 iswomni 7141 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
31 ismkv 7129 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
3230, 31anbi12d 470 . . . . 5 (𝐴 ∈ V → ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) ↔ (∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
33 19.26 1474 . . . . 5 (∀𝑓((𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) ↔ (∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
3432, 33bitr4di 197 . . . 4 (𝐴 ∈ V → ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) ↔ ∀𝑓((𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
35 jcab 598 . . . . 5 ((𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) ↔ ((𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
3635albii 1463 . . . 4 (∀𝑓(𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) ↔ ∀𝑓((𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
3734, 36bitr4di 197 . . 3 (𝐴 ∈ V → ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) ↔ ∀𝑓(𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
3828, 29, 373bitr4d 219 . 2 (𝐴 ∈ V → (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov)))
391, 3, 38pm5.21nii 699 1 (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829  wal 1346   = wceq 1348  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  c0 3414  wf 5194  cfv 5198  1oc1o 6388  2oc2o 6389  Omnicomni 7110  Markovcmarkov 7127  WOmnicwomni 7139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4115
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-nul 3415  df-sn 3589  df-suc 4356  df-fn 5201  df-f 5202  df-1o 6395  df-omni 7111  df-markov 7128  df-womni 7140
This theorem is referenced by:  lpowlpo  7144
  Copyright terms: Public domain W3C validator