ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omniwomnimkv GIF version

Theorem omniwomnimkv 7269
Description: A set is omniscient if and only if it is weakly omniscient and Markov. The case 𝐴 = ω says that LPO WLPO MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
omniwomnimkv (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov))

Proof of Theorem omniwomnimkv
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2783 . 2 (𝐴 ∈ Omni → 𝐴 ∈ V)
2 simpl 109 . . 3 ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) → 𝐴 ∈ WOmni)
32elexd 2785 . 2 ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) → 𝐴 ∈ V)
4 1n0 6518 . . . . . . . . . . . . . . 15 1o ≠ ∅
54nesymi 2422 . . . . . . . . . . . . . 14 ¬ ∅ = 1o
6 eqeq1 2212 . . . . . . . . . . . . . 14 ((𝑓𝑥) = ∅ → ((𝑓𝑥) = 1o ↔ ∅ = 1o))
75, 6mtbiri 677 . . . . . . . . . . . . 13 ((𝑓𝑥) = ∅ → ¬ (𝑓𝑥) = 1o)
87reximi 2603 . . . . . . . . . . . 12 (∃𝑥𝐴 (𝑓𝑥) = ∅ → ∃𝑥𝐴 ¬ (𝑓𝑥) = 1o)
9 rexnalim 2495 . . . . . . . . . . . 12 (∃𝑥𝐴 ¬ (𝑓𝑥) = 1o → ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o)
108, 9syl 14 . . . . . . . . . . 11 (∃𝑥𝐴 (𝑓𝑥) = ∅ → ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o)
1110orim1i 762 . . . . . . . . . 10 ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))
1211orcomd 731 . . . . . . . . 9 ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o))
13 df-dc 837 . . . . . . . . 9 (DECID𝑥𝐴 (𝑓𝑥) = 1o ↔ (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o))
1412, 13sylibr 134 . . . . . . . 8 ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) → DECID𝑥𝐴 (𝑓𝑥) = 1o)
1514adantl 277 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → DECID𝑥𝐴 (𝑓𝑥) = 1o)
16 simpr 110 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))
1716orcomd 731 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∃𝑥𝐴 (𝑓𝑥) = ∅))
1817ord 726 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))
1915, 18jca 306 . . . . . 6 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
20 simprl 529 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → DECID𝑥𝐴 (𝑓𝑥) = 1o)
2120, 13sylib 122 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o))
22 simprr 531 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))
2322orim2d 790 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → ((∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∃𝑥𝐴 (𝑓𝑥) = ∅)))
2421, 23mpd 13 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∃𝑥𝐴 (𝑓𝑥) = ∅))
2524orcomd 731 . . . . . 6 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))
2619, 25impbida 596 . . . . 5 ((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) → ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) ↔ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
2726pm5.74da 443 . . . 4 (𝐴 ∈ V → ((𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) ↔ (𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
2827albidv 1847 . . 3 (𝐴 ∈ V → (∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) ↔ ∀𝑓(𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
29 isomni 7238 . . 3 (𝐴 ∈ V → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))))
30 iswomni 7267 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
31 ismkv 7255 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
3230, 31anbi12d 473 . . . . 5 (𝐴 ∈ V → ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) ↔ (∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
33 19.26 1504 . . . . 5 (∀𝑓((𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) ↔ (∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
3432, 33bitr4di 198 . . . 4 (𝐴 ∈ V → ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) ↔ ∀𝑓((𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
35 jcab 603 . . . . 5 ((𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) ↔ ((𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
3635albii 1493 . . . 4 (∀𝑓(𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) ↔ ∀𝑓((𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
3734, 36bitr4di 198 . . 3 (𝐴 ∈ V → ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) ↔ ∀𝑓(𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
3828, 29, 373bitr4d 220 . 2 (𝐴 ∈ V → (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov)))
391, 3, 38pm5.21nii 706 1 (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  wal 1371   = wceq 1373  wcel 2176  wral 2484  wrex 2485  Vcvv 2772  c0 3460  wf 5267  cfv 5271  1oc1o 6495  2oc2o 6496  Omnicomni 7236  Markovcmarkov 7253  WOmnicwomni 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-nul 4170
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-nul 3461  df-sn 3639  df-suc 4418  df-fn 5274  df-f 5275  df-1o 6502  df-omni 7237  df-markov 7254  df-womni 7266
This theorem is referenced by:  lpowlpo  7270
  Copyright terms: Public domain W3C validator