| Step | Hyp | Ref
| Expression |
| 1 | | elex 2774 |
. 2
⊢ (𝐴 ∈ Omni → 𝐴 ∈ V) |
| 2 | | simpl 109 |
. . 3
⊢ ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) → 𝐴 ∈ WOmni) |
| 3 | 2 | elexd 2776 |
. 2
⊢ ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) → 𝐴 ∈ V) |
| 4 | | 1n0 6490 |
. . . . . . . . . . . . . . 15
⊢
1o ≠ ∅ |
| 5 | 4 | nesymi 2413 |
. . . . . . . . . . . . . 14
⊢ ¬
∅ = 1o |
| 6 | | eqeq1 2203 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑥) = ∅ → ((𝑓‘𝑥) = 1o ↔ ∅ =
1o)) |
| 7 | 5, 6 | mtbiri 676 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑥) = ∅ → ¬ (𝑓‘𝑥) = 1o) |
| 8 | 7 | reximi 2594 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
𝐴 (𝑓‘𝑥) = ∅ → ∃𝑥 ∈ 𝐴 ¬ (𝑓‘𝑥) = 1o) |
| 9 | | rexnalim 2486 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
𝐴 ¬ (𝑓‘𝑥) = 1o → ¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) |
| 10 | 8, 9 | syl 14 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
𝐴 (𝑓‘𝑥) = ∅ → ¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) |
| 11 | 10 | orim1i 761 |
. . . . . . . . . 10
⊢
((∃𝑥 ∈
𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) → (¬
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
| 12 | 11 | orcomd 730 |
. . . . . . . . 9
⊢
((∃𝑥 ∈
𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∨ ¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
| 13 | | df-dc 836 |
. . . . . . . . 9
⊢
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∨ ¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
| 14 | 12, 13 | sylibr 134 |
. . . . . . . 8
⊢
((∃𝑥 ∈
𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) →
DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) |
| 15 | 14 | adantl 277 |
. . . . . . 7
⊢ (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) →
DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) |
| 16 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
| 17 | 16 | orcomd 730 |
. . . . . . . 8
⊢ (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∨ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) |
| 18 | 17 | ord 725 |
. . . . . . 7
⊢ (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) → (¬
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) |
| 19 | 15, 18 | jca 306 |
. . . . . 6
⊢ (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) →
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) |
| 20 | | simprl 529 |
. . . . . . . . 9
⊢ (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) → DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) |
| 21 | 20, 13 | sylib 122 |
. . . . . . . 8
⊢ (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∨ ¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
| 22 | | simprr 531 |
. . . . . . . . 9
⊢ (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) |
| 23 | 22 | orim2d 789 |
. . . . . . . 8
⊢ (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) → ((∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∨ ¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∨ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) |
| 24 | 21, 23 | mpd 13 |
. . . . . . 7
⊢ (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∨ ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) |
| 25 | 24 | orcomd 730 |
. . . . . 6
⊢ (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
| 26 | 19, 25 | impbida 596 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) → ((∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
| 27 | 26 | pm5.74da 443 |
. . . 4
⊢ (𝐴 ∈ V → ((𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ↔ (𝑓:𝐴⟶2o →
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))))) |
| 28 | 27 | albidv 1838 |
. . 3
⊢ (𝐴 ∈ V → (∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) ↔ ∀𝑓(𝑓:𝐴⟶2o →
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))))) |
| 29 | | isomni 7202 |
. . 3
⊢ (𝐴 ∈ V → (𝐴 ∈ Omni ↔
∀𝑓(𝑓:𝐴⟶2o → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)))) |
| 30 | | iswomni 7231 |
. . . . . 6
⊢ (𝐴 ∈ V → (𝐴 ∈ WOmni ↔
∀𝑓(𝑓:𝐴⟶2o →
DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| 31 | | ismkv 7219 |
. . . . . 6
⊢ (𝐴 ∈ V → (𝐴 ∈ Markov ↔
∀𝑓(𝑓:𝐴⟶2o → (¬
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
| 32 | 30, 31 | anbi12d 473 |
. . . . 5
⊢ (𝐴 ∈ V → ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) ↔
(∀𝑓(𝑓:𝐴⟶2o →
DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ∧ ∀𝑓(𝑓:𝐴⟶2o → (¬
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))))) |
| 33 | | 19.26 1495 |
. . . . 5
⊢
(∀𝑓((𝑓:𝐴⟶2o →
DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) ↔ (∀𝑓(𝑓:𝐴⟶2o →
DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ∧ ∀𝑓(𝑓:𝐴⟶2o → (¬
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
| 34 | 32, 33 | bitr4di 198 |
. . . 4
⊢ (𝐴 ∈ V → ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) ↔
∀𝑓((𝑓:𝐴⟶2o →
DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))))) |
| 35 | | jcab 603 |
. . . . 5
⊢ ((𝑓:𝐴⟶2o →
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) ↔ ((𝑓:𝐴⟶2o →
DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
| 36 | 35 | albii 1484 |
. . . 4
⊢
(∀𝑓(𝑓:𝐴⟶2o →
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) ↔ ∀𝑓((𝑓:𝐴⟶2o →
DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)))) |
| 37 | 34, 36 | bitr4di 198 |
. . 3
⊢ (𝐴 ∈ V → ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) ↔
∀𝑓(𝑓:𝐴⟶2o →
(DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ∧ (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))))) |
| 38 | 28, 29, 37 | 3bitr4d 220 |
. 2
⊢ (𝐴 ∈ V → (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈
Markov))) |
| 39 | 1, 3, 38 | pm5.21nii 705 |
1
⊢ (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈
Markov)) |