ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omniwomnimkv GIF version

Theorem omniwomnimkv 7178
Description: A set is omniscient if and only if it is weakly omniscient and Markov. The case 𝐴 = ω says that LPO WLPO MP which is a remark following Definition 2.5 of [Pierik], p. 9. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
omniwomnimkv (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov))

Proof of Theorem omniwomnimkv
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2760 . 2 (𝐴 ∈ Omni → 𝐴 ∈ V)
2 simpl 109 . . 3 ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) → 𝐴 ∈ WOmni)
32elexd 2762 . 2 ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) → 𝐴 ∈ V)
4 1n0 6446 . . . . . . . . . . . . . . 15 1o ≠ ∅
54nesymi 2403 . . . . . . . . . . . . . 14 ¬ ∅ = 1o
6 eqeq1 2194 . . . . . . . . . . . . . 14 ((𝑓𝑥) = ∅ → ((𝑓𝑥) = 1o ↔ ∅ = 1o))
75, 6mtbiri 676 . . . . . . . . . . . . 13 ((𝑓𝑥) = ∅ → ¬ (𝑓𝑥) = 1o)
87reximi 2584 . . . . . . . . . . . 12 (∃𝑥𝐴 (𝑓𝑥) = ∅ → ∃𝑥𝐴 ¬ (𝑓𝑥) = 1o)
9 rexnalim 2476 . . . . . . . . . . . 12 (∃𝑥𝐴 ¬ (𝑓𝑥) = 1o → ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o)
108, 9syl 14 . . . . . . . . . . 11 (∃𝑥𝐴 (𝑓𝑥) = ∅ → ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o)
1110orim1i 761 . . . . . . . . . 10 ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))
1211orcomd 730 . . . . . . . . 9 ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o))
13 df-dc 836 . . . . . . . . 9 (DECID𝑥𝐴 (𝑓𝑥) = 1o ↔ (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o))
1412, 13sylibr 134 . . . . . . . 8 ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) → DECID𝑥𝐴 (𝑓𝑥) = 1o)
1514adantl 277 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → DECID𝑥𝐴 (𝑓𝑥) = 1o)
16 simpr 110 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))
1716orcomd 730 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∃𝑥𝐴 (𝑓𝑥) = ∅))
1817ord 725 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))
1915, 18jca 306 . . . . . 6 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
20 simprl 529 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → DECID𝑥𝐴 (𝑓𝑥) = 1o)
2120, 13sylib 122 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o))
22 simprr 531 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))
2322orim2d 789 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → ((∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ¬ ∀𝑥𝐴 (𝑓𝑥) = 1o) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∃𝑥𝐴 (𝑓𝑥) = ∅)))
2421, 23mpd 13 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → (∀𝑥𝐴 (𝑓𝑥) = 1o ∨ ∃𝑥𝐴 (𝑓𝑥) = ∅))
2524orcomd 730 . . . . . 6 (((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) ∧ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))
2619, 25impbida 596 . . . . 5 ((𝐴 ∈ V ∧ 𝑓:𝐴⟶2o) → ((∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o) ↔ (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
2726pm5.74da 443 . . . 4 (𝐴 ∈ V → ((𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) ↔ (𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
2827albidv 1834 . . 3 (𝐴 ∈ V → (∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)) ↔ ∀𝑓(𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
29 isomni 7147 . . 3 (𝐴 ∈ V → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))))
30 iswomni 7176 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
31 ismkv 7164 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
3230, 31anbi12d 473 . . . . 5 (𝐴 ∈ V → ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) ↔ (∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
33 19.26 1491 . . . . 5 (∀𝑓((𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) ↔ (∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
3432, 33bitr4di 198 . . . 4 (𝐴 ∈ V → ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) ↔ ∀𝑓((𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
35 jcab 603 . . . . 5 ((𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) ↔ ((𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
3635albii 1480 . . . 4 (∀𝑓(𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))) ↔ ∀𝑓((𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o) ∧ (𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
3734, 36bitr4di 198 . . 3 (𝐴 ∈ V → ((𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov) ↔ ∀𝑓(𝑓:𝐴⟶2o → (DECID𝑥𝐴 (𝑓𝑥) = 1o ∧ (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))))
3828, 29, 373bitr4d 220 . 2 (𝐴 ∈ V → (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov)))
391, 3, 38pm5.21nii 705 1 (𝐴 ∈ Omni ↔ (𝐴 ∈ WOmni ∧ 𝐴 ∈ Markov))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  wal 1361   = wceq 1363  wcel 2158  wral 2465  wrex 2466  Vcvv 2749  c0 3434  wf 5224  cfv 5228  1oc1o 6423  2oc2o 6424  Omnicomni 7145  Markovcmarkov 7162  WOmnicwomni 7174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-nul 4141
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-v 2751  df-dif 3143  df-un 3145  df-nul 3435  df-sn 3610  df-suc 4383  df-fn 5231  df-f 5232  df-1o 6430  df-omni 7146  df-markov 7163  df-womni 7175
This theorem is referenced by:  lpowlpo  7179
  Copyright terms: Public domain W3C validator