ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mobidv GIF version

Theorem mobidv 2091
Description: Formula-building rule for "at most one" quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
mobidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mobidv (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem mobidv
StepHypRef Expression
1 nfv 1552 . 2 𝑥𝜑
2 mobidv.1 . 2 (𝜑 → (𝜓𝜒))
31, 2mobid 2090 1 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  ∃*wmo 2056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-eu 2058  df-mo 2059
This theorem is referenced by:  mobii  2092  mosubopt  4744  dffun6f  5289  funmo  5291  1stconst  6314  2ndconst  6315  exmidmotap  7380  imasaddfnlemg  13190  dvfgg  15204
  Copyright terms: Public domain W3C validator