| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mobidv | GIF version | ||
| Description: Formula-building rule for "at most one" quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | mobidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | mobid 2080 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∃*wmo 2046 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-eu 2048 df-mo 2049 | 
| This theorem is referenced by: mobii 2082 mosubopt 4728 dffun6f 5271 funmo 5273 1stconst 6279 2ndconst 6280 exmidmotap 7328 imasaddfnlemg 12957 dvfgg 14924 | 
| Copyright terms: Public domain | W3C validator |