| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mobidv | GIF version | ||
| Description: Formula-building rule for "at most one" quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | mobidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | mobid 2090 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃*wmo 2056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-eu 2058 df-mo 2059 |
| This theorem is referenced by: mobii 2092 mosubopt 4744 dffun6f 5289 funmo 5291 1stconst 6314 2ndconst 6315 exmidmotap 7380 imasaddfnlemg 13190 dvfgg 15204 |
| Copyright terms: Public domain | W3C validator |