ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoeq1f GIF version

Theorem rmoeq1f 2664
Description: Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypotheses
Ref Expression
raleq1f.1 𝑥𝐴
raleq1f.2 𝑥𝐵
Assertion
Ref Expression
rmoeq1f (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))

Proof of Theorem rmoeq1f
StepHypRef Expression
1 raleq1f.1 . . . 4 𝑥𝐴
2 raleq1f.2 . . . 4 𝑥𝐵
31, 2nfeq 2320 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2234 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 462 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5mobid 2054 . 2 (𝐴 = 𝐵 → (∃*𝑥(𝑥𝐴𝜑) ↔ ∃*𝑥(𝑥𝐵𝜑)))
7 df-rmo 2456 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
8 df-rmo 2456 . 2 (∃*𝑥𝐵 𝜑 ↔ ∃*𝑥(𝑥𝐵𝜑))
96, 7, 83bitr4g 222 1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  ∃*wmo 2020  wcel 2141  wnfc 2299  ∃*wrmo 2451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rmo 2456
This theorem is referenced by:  rmoeq1  2668
  Copyright terms: Public domain W3C validator