| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rmoeq1f | GIF version | ||
| Description: Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.) | 
| Ref | Expression | 
|---|---|
| raleq1f.1 | ⊢ Ⅎ𝑥𝐴 | 
| raleq1f.2 | ⊢ Ⅎ𝑥𝐵 | 
| Ref | Expression | 
|---|---|
| rmoeq1f | ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | raleq1f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | raleq1f.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2347 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 | 
| 4 | eleq2 2260 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 5 | 4 | anbi1d 465 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) | 
| 6 | 3, 5 | mobid 2080 | . 2 ⊢ (𝐴 = 𝐵 → (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | 
| 7 | df-rmo 2483 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 8 | df-rmo 2483 | . 2 ⊢ (∃*𝑥 ∈ 𝐵 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 9 | 6, 7, 8 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃*wmo 2046 ∈ wcel 2167 Ⅎwnfc 2326 ∃*wrmo 2478 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rmo 2483 | 
| This theorem is referenced by: rmoeq1 2696 | 
| Copyright terms: Public domain | W3C validator |