ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgsoddprmlem2 GIF version

Theorem 2lgsoddprmlem2 15194
Description: Lemma 2 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))

Proof of Theorem 2lgsoddprmlem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 8nn 9149 . . . . . 6 8 ∈ ℕ
2 nnq 9698 . . . . . 6 (8 ∈ ℕ → 8 ∈ ℚ)
31, 2ax-mp 5 . . . . 5 8 ∈ ℚ
4 8pos 9085 . . . . 5 0 < 8
5 eqcom 2195 . . . . . 6 (𝑅 = (𝑁 mod 8) ↔ (𝑁 mod 8) = 𝑅)
6 modqmuladdim 10438 . . . . . 6 ((𝑁 ∈ ℤ ∧ 8 ∈ ℚ ∧ 0 < 8) → ((𝑁 mod 8) = 𝑅 → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
75, 6biimtrid 152 . . . . 5 ((𝑁 ∈ ℤ ∧ 8 ∈ ℚ ∧ 0 < 8) → (𝑅 = (𝑁 mod 8) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
83, 4, 7mp3an23 1340 . . . 4 (𝑁 ∈ ℤ → (𝑅 = (𝑁 mod 8) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
98imp 124 . . 3 ((𝑁 ∈ ℤ ∧ 𝑅 = (𝑁 mod 8)) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))
1093adant2 1018 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))
11 zcn 9322 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
12 8cn 9068 . . . . . . . . 9 8 ∈ ℂ
1312a1i 9 . . . . . . . 8 (𝑘 ∈ ℤ → 8 ∈ ℂ)
1411, 13mulcomd 8041 . . . . . . 7 (𝑘 ∈ ℤ → (𝑘 · 8) = (8 · 𝑘))
1514adantl 277 . . . . . 6 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑘 · 8) = (8 · 𝑘))
1615oveq1d 5933 . . . . 5 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 8) + 𝑅) = ((8 · 𝑘) + 𝑅))
1716eqeq2d 2205 . . . 4 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((𝑘 · 8) + 𝑅) ↔ 𝑁 = ((8 · 𝑘) + 𝑅)))
18 simpr 110 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
1918adantr 276 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑘 ∈ ℤ)
20 id 19 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
211a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 8 ∈ ℕ)
2220, 21zmodcld 10416 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 mod 8) ∈ ℕ0)
2322nn0zd 9437 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 mod 8) ∈ ℤ)
24233ad2ant1 1020 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℤ)
25 eleq1 2256 . . . . . . . . . . . 12 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℤ ↔ (𝑁 mod 8) ∈ ℤ))
26253ad2ant3 1022 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℤ ↔ (𝑁 mod 8) ∈ ℤ))
2724, 26mpbird 167 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℤ)
2827adantr 276 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → 𝑅 ∈ ℤ)
2928adantr 276 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑅 ∈ ℤ)
30 simpr 110 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑁 = ((8 · 𝑘) + 𝑅))
31 2lgsoddprmlem1 15193 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8)))
3219, 29, 30, 31syl3anc 1249 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8)))
3332breq2d 4041 . . . . . 6 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
34 2z 9345 . . . . . . 7 2 ∈ ℤ
35 simp1 999 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑁 ∈ ℤ)
361a1i 9 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 8 ∈ ℕ)
3735, 36zmodcld 10416 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℕ0)
3837nn0red 9294 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℝ)
39 eleq1 2256 . . . . . . . . . . 11 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℝ ↔ (𝑁 mod 8) ∈ ℝ))
40393ad2ant3 1022 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℝ ↔ (𝑁 mod 8) ∈ ℝ))
4138, 40mpbird 167 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℝ)
42 resqcl 10678 . . . . . . . . . . 11 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
43 peano2rem 8286 . . . . . . . . . . 11 ((𝑅↑2) ∈ ℝ → ((𝑅↑2) − 1) ∈ ℝ)
4442, 43syl 14 . . . . . . . . . 10 (𝑅 ∈ ℝ → ((𝑅↑2) − 1) ∈ ℝ)
45 8re 9067 . . . . . . . . . . 11 8 ∈ ℝ
4645a1i 9 . . . . . . . . . 10 (𝑅 ∈ ℝ → 8 ∈ ℝ)
4745, 4gt0ap0ii 8647 . . . . . . . . . . 11 8 # 0
4847a1i 9 . . . . . . . . . 10 (𝑅 ∈ ℝ → 8 # 0)
4944, 46, 48redivclapd 8854 . . . . . . . . 9 (𝑅 ∈ ℝ → (((𝑅↑2) − 1) / 8) ∈ ℝ)
5041, 49syl 14 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (((𝑅↑2) − 1) / 8) ∈ ℝ)
5150adantr 276 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (((𝑅↑2) − 1) / 8) ∈ ℝ)
52 eleq1 2256 . . . . . . . . . . . 12 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℕ0 ↔ (𝑁 mod 8) ∈ ℕ0))
53523ad2ant3 1022 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℕ0 ↔ (𝑁 mod 8) ∈ ℕ0))
5437, 53mpbird 167 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℕ0)
55 nn0z 9337 . . . . . . . . . 10 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
561nnzi 9338 . . . . . . . . . . . . . . 15 8 ∈ ℤ
5756a1i 9 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 8 ∈ ℤ)
58 zsqcl 10681 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℤ)
5958adantl 277 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘↑2) ∈ ℤ)
6057, 59zmulcld 9445 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) ∈ ℤ)
6134a1i 9 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∈ ℤ)
62 zmulcl 9370 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℤ)
6362ancoms 268 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℤ)
6461, 63zmulcld 9445 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · (𝑘 · 𝑅)) ∈ ℤ)
6560, 64zaddcld 9443 . . . . . . . . . . . 12 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ)
66 4z 9347 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
6766a1i 9 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 4 ∈ ℤ)
6867, 59zmulcld 9445 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (4 · (𝑘↑2)) ∈ ℤ)
6968, 63zaddcld 9443 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ)
70 dvdsmul1 11956 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ) → 2 ∥ (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
7134, 69, 70sylancr 414 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
72 4t2e8 9140 . . . . . . . . . . . . . . . . . . 19 (4 · 2) = 8
73 4cn 9060 . . . . . . . . . . . . . . . . . . . 20 4 ∈ ℂ
74 2cn 9053 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℂ
7573, 74mulcomi 8025 . . . . . . . . . . . . . . . . . . 19 (4 · 2) = (2 · 4)
7672, 75eqtr3i 2216 . . . . . . . . . . . . . . . . . 18 8 = (2 · 4)
7776a1i 9 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 8 = (2 · 4))
7877oveq1d 5933 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) = ((2 · 4) · (𝑘↑2)))
7974a1i 9 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∈ ℂ)
8073a1i 9 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 4 ∈ ℂ)
8158zcnd 9440 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℂ)
8281adantl 277 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘↑2) ∈ ℂ)
8379, 80, 82mulassd 8043 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((2 · 4) · (𝑘↑2)) = (2 · (4 · (𝑘↑2))))
8478, 83eqtrd 2226 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) = (2 · (4 · (𝑘↑2))))
8584oveq1d 5933 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) = ((2 · (4 · (𝑘↑2))) + (2 · (𝑘 · 𝑅))))
8668zcnd 9440 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (4 · (𝑘↑2)) ∈ ℂ)
8762zcnd 9440 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℂ)
8887ancoms 268 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℂ)
8979, 86, 88adddid 8044 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))) = ((2 · (4 · (𝑘↑2))) + (2 · (𝑘 · 𝑅))))
9085, 89eqtr4d 2229 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) = (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
9171, 90breqtrrd 4057 . . . . . . . . . . . 12 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))
9265, 91jca 306 . . . . . . . . . . 11 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
9392ex 115 . . . . . . . . . 10 (𝑅 ∈ ℤ → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9454, 55, 933syl 17 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9594imp 124 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
9695adantr 276 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
97 dvdsaddre2b 11984 . . . . . . 7 ((2 ∈ ℤ ∧ (((𝑅↑2) − 1) / 8) ∈ ℝ ∧ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
9834, 51, 96, 97mp3an2ani 1355 . . . . . 6 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
9933, 98bitr4d 191 . . . . 5 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
10099ex 115 . . . 4 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((8 · 𝑘) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
10117, 100sylbid 150 . . 3 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((𝑘 · 8) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
102101rexlimdva 2611 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
10310, 102mpd 13 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4029  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cmin 8190   # cap 8600   / cdiv 8691  cn 8982  2c2 9033  4c4 9035  8c8 9039  0cn0 9240  cz 9317  cq 9684   mod cmo 10393  cexp 10609  cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-dvds 11931
This theorem is referenced by:  2lgsoddprmlem4  15200
  Copyright terms: Public domain W3C validator