| Step | Hyp | Ref
 | Expression | 
| 1 |   | 8nn 9158 | 
. . . . . 6
⊢ 8 ∈
ℕ | 
| 2 |   | nnq 9707 | 
. . . . . 6
⊢ (8 ∈
ℕ → 8 ∈ ℚ) | 
| 3 | 1, 2 | ax-mp 5 | 
. . . . 5
⊢ 8 ∈
ℚ | 
| 4 |   | 8pos 9093 | 
. . . . 5
⊢ 0 <
8 | 
| 5 |   | eqcom 2198 | 
. . . . . 6
⊢ (𝑅 = (𝑁 mod 8) ↔ (𝑁 mod 8) = 𝑅) | 
| 6 |   | modqmuladdim 10459 | 
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 8 ∈
ℚ ∧ 0 < 8) → ((𝑁 mod 8) = 𝑅 → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))) | 
| 7 | 5, 6 | biimtrid 152 | 
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 8 ∈
ℚ ∧ 0 < 8) → (𝑅 = (𝑁 mod 8) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))) | 
| 8 | 3, 4, 7 | mp3an23 1340 | 
. . . 4
⊢ (𝑁 ∈ ℤ → (𝑅 = (𝑁 mod 8) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))) | 
| 9 | 8 | imp 124 | 
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑅 = (𝑁 mod 8)) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)) | 
| 10 | 9 | 3adant2 1018 | 
. 2
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)) | 
| 11 |   | zcn 9331 | 
. . . . . . . 8
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℂ) | 
| 12 |   | 8cn 9076 | 
. . . . . . . . 9
⊢ 8 ∈
ℂ | 
| 13 | 12 | a1i 9 | 
. . . . . . . 8
⊢ (𝑘 ∈ ℤ → 8 ∈
ℂ) | 
| 14 | 11, 13 | mulcomd 8048 | 
. . . . . . 7
⊢ (𝑘 ∈ ℤ → (𝑘 · 8) = (8 · 𝑘)) | 
| 15 | 14 | adantl 277 | 
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑘 · 8) = (8 · 𝑘)) | 
| 16 | 15 | oveq1d 5937 | 
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 8) + 𝑅) = ((8 · 𝑘) + 𝑅)) | 
| 17 | 16 | eqeq2d 2208 | 
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((𝑘 · 8) + 𝑅) ↔ 𝑁 = ((8 · 𝑘) + 𝑅))) | 
| 18 |   | simpr 110 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ) | 
| 19 | 18 | adantr 276 | 
. . . . . . . 8
⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑘 ∈ ℤ) | 
| 20 |   | id 19 | 
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℤ) | 
| 21 | 1 | a1i 9 | 
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℤ → 8 ∈
ℕ) | 
| 22 | 20, 21 | zmodcld 10437 | 
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → (𝑁 mod 8) ∈
ℕ0) | 
| 23 | 22 | nn0zd 9446 | 
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → (𝑁 mod 8) ∈
ℤ) | 
| 24 | 23 | 3ad2ant1 1020 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℤ) | 
| 25 |   | eleq1 2259 | 
. . . . . . . . . . . 12
⊢ (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℤ ↔ (𝑁 mod 8) ∈ ℤ)) | 
| 26 | 25 | 3ad2ant3 1022 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℤ ↔ (𝑁 mod 8) ∈ ℤ)) | 
| 27 | 24, 26 | mpbird 167 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℤ) | 
| 28 | 27 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → 𝑅 ∈ ℤ) | 
| 29 | 28 | adantr 276 | 
. . . . . . . 8
⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑅 ∈ ℤ) | 
| 30 |   | simpr 110 | 
. . . . . . . 8
⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑁 = ((8 · 𝑘) + 𝑅)) | 
| 31 |   | 2lgsoddprmlem1 15346 | 
. . . . . . . 8
⊢ ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((𝑁↑2) − 1) / 8) = (((8 ·
(𝑘↑2)) + (2 ·
(𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))) | 
| 32 | 19, 29, 30, 31 | syl3anc 1249 | 
. . . . . . 7
⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((𝑁↑2) − 1) / 8) = (((8 ·
(𝑘↑2)) + (2 ·
(𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))) | 
| 33 | 32 | breq2d 4045 | 
. . . . . 6
⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥
(((8 · (𝑘↑2)) +
(2 · (𝑘 ·
𝑅))) + (((𝑅↑2) − 1) / 8)))) | 
| 34 |   | 2z 9354 | 
. . . . . . 7
⊢ 2 ∈
ℤ | 
| 35 |   | simp1 999 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → 𝑁 ∈ ℤ) | 
| 36 | 1 | a1i 9 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → 8 ∈
ℕ) | 
| 37 | 35, 36 | zmodcld 10437 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈
ℕ0) | 
| 38 | 37 | nn0red 9303 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℝ) | 
| 39 |   | eleq1 2259 | 
. . . . . . . . . . 11
⊢ (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℝ ↔ (𝑁 mod 8) ∈ ℝ)) | 
| 40 | 39 | 3ad2ant3 1022 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℝ ↔ (𝑁 mod 8) ∈ ℝ)) | 
| 41 | 38, 40 | mpbird 167 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℝ) | 
| 42 |   | resqcl 10699 | 
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ → (𝑅↑2) ∈
ℝ) | 
| 43 |   | peano2rem 8293 | 
. . . . . . . . . . 11
⊢ ((𝑅↑2) ∈ ℝ →
((𝑅↑2) − 1)
∈ ℝ) | 
| 44 | 42, 43 | syl 14 | 
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ → ((𝑅↑2) − 1) ∈
ℝ) | 
| 45 |   | 8re 9075 | 
. . . . . . . . . . 11
⊢ 8 ∈
ℝ | 
| 46 | 45 | a1i 9 | 
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ → 8 ∈
ℝ) | 
| 47 | 45, 4 | gt0ap0ii 8655 | 
. . . . . . . . . . 11
⊢ 8 #
0 | 
| 48 | 47 | a1i 9 | 
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ → 8 #
0) | 
| 49 | 44, 46, 48 | redivclapd 8862 | 
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ → (((𝑅↑2) − 1) / 8) ∈
ℝ) | 
| 50 | 41, 49 | syl 14 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (((𝑅↑2) − 1) / 8) ∈
ℝ) | 
| 51 | 50 | adantr 276 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (((𝑅↑2) − 1) / 8) ∈
ℝ) | 
| 52 |   | eleq1 2259 | 
. . . . . . . . . . . 12
⊢ (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℕ0 ↔ (𝑁 mod 8) ∈
ℕ0)) | 
| 53 | 52 | 3ad2ant3 1022 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℕ0 ↔ (𝑁 mod 8) ∈
ℕ0)) | 
| 54 | 37, 53 | mpbird 167 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → 𝑅 ∈
ℕ0) | 
| 55 |   | nn0z 9346 | 
. . . . . . . . . 10
⊢ (𝑅 ∈ ℕ0
→ 𝑅 ∈
ℤ) | 
| 56 | 1 | nnzi 9347 | 
. . . . . . . . . . . . . . 15
⊢ 8 ∈
ℤ | 
| 57 | 56 | a1i 9 | 
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 8 ∈
ℤ) | 
| 58 |   | zsqcl 10702 | 
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℤ → (𝑘↑2) ∈
ℤ) | 
| 59 | 58 | adantl 277 | 
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘↑2) ∈
ℤ) | 
| 60 | 57, 59 | zmulcld 9454 | 
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8
· (𝑘↑2)) ∈
ℤ) | 
| 61 | 34 | a1i 9 | 
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∈
ℤ) | 
| 62 |   | zmulcl 9379 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℤ) | 
| 63 | 62 | ancoms 268 | 
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℤ) | 
| 64 | 61, 63 | zmulcld 9454 | 
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2
· (𝑘 · 𝑅)) ∈
ℤ) | 
| 65 | 60, 64 | zaddcld 9452 | 
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8
· (𝑘↑2)) + (2
· (𝑘 · 𝑅))) ∈
ℤ) | 
| 66 |   | 4z 9356 | 
. . . . . . . . . . . . . . . . 17
⊢ 4 ∈
ℤ | 
| 67 | 66 | a1i 9 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 4 ∈
ℤ) | 
| 68 | 67, 59 | zmulcld 9454 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (4
· (𝑘↑2)) ∈
ℤ) | 
| 69 | 68, 63 | zaddcld 9452 | 
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((4
· (𝑘↑2)) +
(𝑘 · 𝑅)) ∈
ℤ) | 
| 70 |   | dvdsmul1 11978 | 
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℤ ∧ ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ) → 2 ∥ (2
· ((4 · (𝑘↑2)) + (𝑘 · 𝑅)))) | 
| 71 | 34, 69, 70 | sylancr 414 | 
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2
∥ (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅)))) | 
| 72 |   | 4t2e8 9149 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (4
· 2) = 8 | 
| 73 |   | 4cn 9068 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ 4 ∈
ℂ | 
| 74 |   | 2cn 9061 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℂ | 
| 75 | 73, 74 | mulcomi 8032 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (4
· 2) = (2 · 4) | 
| 76 | 72, 75 | eqtr3i 2219 | 
. . . . . . . . . . . . . . . . . 18
⊢ 8 = (2
· 4) | 
| 77 | 76 | a1i 9 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 8 = (2
· 4)) | 
| 78 | 77 | oveq1d 5937 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8
· (𝑘↑2)) = ((2
· 4) · (𝑘↑2))) | 
| 79 | 74 | a1i 9 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∈
ℂ) | 
| 80 | 73 | a1i 9 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 4 ∈
ℂ) | 
| 81 | 58 | zcnd 9449 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ → (𝑘↑2) ∈
ℂ) | 
| 82 | 81 | adantl 277 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘↑2) ∈
ℂ) | 
| 83 | 79, 80, 82 | mulassd 8050 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((2
· 4) · (𝑘↑2)) = (2 · (4 · (𝑘↑2)))) | 
| 84 | 78, 83 | eqtrd 2229 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8
· (𝑘↑2)) = (2
· (4 · (𝑘↑2)))) | 
| 85 | 84 | oveq1d 5937 | 
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8
· (𝑘↑2)) + (2
· (𝑘 · 𝑅))) = ((2 · (4 ·
(𝑘↑2))) + (2 ·
(𝑘 · 𝑅)))) | 
| 86 | 68 | zcnd 9449 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (4
· (𝑘↑2)) ∈
ℂ) | 
| 87 | 62 | zcnd 9449 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℂ) | 
| 88 | 87 | ancoms 268 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℂ) | 
| 89 | 79, 86, 88 | adddid 8051 | 
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2
· ((4 · (𝑘↑2)) + (𝑘 · 𝑅))) = ((2 · (4 · (𝑘↑2))) + (2 · (𝑘 · 𝑅)))) | 
| 90 | 85, 89 | eqtr4d 2232 | 
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8
· (𝑘↑2)) + (2
· (𝑘 · 𝑅))) = (2 · ((4 ·
(𝑘↑2)) + (𝑘 · 𝑅)))) | 
| 91 | 71, 90 | breqtrrd 4061 | 
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2
∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))) | 
| 92 | 65, 91 | jca 306 | 
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((8
· (𝑘↑2)) + (2
· (𝑘 · 𝑅))) ∈ ℤ ∧ 2
∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))) | 
| 93 | 92 | ex 115 | 
. . . . . . . . . 10
⊢ (𝑅 ∈ ℤ → (𝑘 ∈ ℤ → (((8
· (𝑘↑2)) + (2
· (𝑘 · 𝑅))) ∈ ℤ ∧ 2
∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))) | 
| 94 | 54, 55, 93 | 3syl 17 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8
· (𝑘↑2)) + (2
· (𝑘 · 𝑅)))))) | 
| 95 | 94 | imp 124 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8
· (𝑘↑2)) + (2
· (𝑘 · 𝑅))))) | 
| 96 | 95 | adantr 276 | 
. . . . . . 7
⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8
· (𝑘↑2)) + (2
· (𝑘 · 𝑅))))) | 
| 97 |   | dvdsaddre2b 12006 | 
. . . . . . 7
⊢ ((2
∈ ℤ ∧ (((𝑅↑2) − 1) / 8) ∈ ℝ
∧ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8
· (𝑘↑2)) + (2
· (𝑘 · 𝑅))))) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔
2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8)))) | 
| 98 | 34, 51, 96, 97 | mp3an2ani 1355 | 
. . . . . 6
⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥
(((8 · (𝑘↑2)) +
(2 · (𝑘 ·
𝑅))) + (((𝑅↑2) − 1) / 8)))) | 
| 99 | 33, 98 | bitr4d 191 | 
. . . . 5
⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥
(((𝑅↑2) − 1) /
8))) | 
| 100 | 99 | ex 115 | 
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((8 · 𝑘) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥
(((𝑅↑2) − 1) /
8)))) | 
| 101 | 17, 100 | sylbid 150 | 
. . 3
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((𝑘 · 8) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥
(((𝑅↑2) − 1) /
8)))) | 
| 102 | 101 | rexlimdva 2614 | 
. 2
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥
(((𝑅↑2) − 1) /
8)))) | 
| 103 | 10, 102 | mpd 13 | 
1
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔
2 ∥ (((𝑅↑2)
− 1) / 8))) |