![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspsnel | GIF version |
Description: Member of span of the singleton of a vector. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsn.f | β’ πΉ = (Scalarβπ) |
lspsn.k | β’ πΎ = (BaseβπΉ) |
lspsn.v | β’ π = (Baseβπ) |
lspsn.t | β’ Β· = ( Β·π βπ) |
lspsn.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspsnel | β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β βπ β πΎ π = (π Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsn.f | . . . 4 β’ πΉ = (Scalarβπ) | |
2 | lspsn.k | . . . 4 β’ πΎ = (BaseβπΉ) | |
3 | lspsn.v | . . . 4 β’ π = (Baseβπ) | |
4 | lspsn.t | . . . 4 β’ Β· = ( Β·π βπ) | |
5 | lspsn.n | . . . 4 β’ π = (LSpanβπ) | |
6 | 1, 2, 3, 4, 5 | lspsn 13693 | . . 3 β’ ((π β LMod β§ π β π) β (πβ{π}) = {π£ β£ βπ β πΎ π£ = (π Β· π)}) |
7 | 6 | eleq2d 2259 | . 2 β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β π β {π£ β£ βπ β πΎ π£ = (π Β· π)})) |
8 | simpr 110 | . . . . . 6 β’ (((π β LMod β§ π β π) β§ π = (π Β· π)) β π = (π Β· π)) | |
9 | vex 2755 | . . . . . . . 8 β’ π β V | |
10 | vscaslid 12640 | . . . . . . . . . 10 β’ ( Β·π = Slot ( Β·π βndx) β§ ( Β·π βndx) β β) | |
11 | 10 | slotex 12507 | . . . . . . . . 9 β’ (π β LMod β ( Β·π βπ) β V) |
12 | 4, 11 | eqeltrid 2276 | . . . . . . . 8 β’ (π β LMod β Β· β V) |
13 | simpr 110 | . . . . . . . 8 β’ ((π β LMod β§ π β π) β π β π) | |
14 | ovexg 5925 | . . . . . . . 8 β’ ((π β V β§ Β· β V β§ π β π) β (π Β· π) β V) | |
15 | 9, 12, 13, 14 | mp3an2ani 1355 | . . . . . . 7 β’ ((π β LMod β§ π β π) β (π Β· π) β V) |
16 | 15 | adantr 276 | . . . . . 6 β’ (((π β LMod β§ π β π) β§ π = (π Β· π)) β (π Β· π) β V) |
17 | 8, 16 | eqeltrd 2266 | . . . . 5 β’ (((π β LMod β§ π β π) β§ π = (π Β· π)) β π β V) |
18 | 17 | ex 115 | . . . 4 β’ ((π β LMod β§ π β π) β (π = (π Β· π) β π β V)) |
19 | 18 | rexlimdvw 2611 | . . 3 β’ ((π β LMod β§ π β π) β (βπ β πΎ π = (π Β· π) β π β V)) |
20 | eqeq1 2196 | . . . . 5 β’ (π£ = π β (π£ = (π Β· π) β π = (π Β· π))) | |
21 | 20 | rexbidv 2491 | . . . 4 β’ (π£ = π β (βπ β πΎ π£ = (π Β· π) β βπ β πΎ π = (π Β· π))) |
22 | 21 | elab3g 2903 | . . 3 β’ ((βπ β πΎ π = (π Β· π) β π β V) β (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ β πΎ π = (π Β· π))) |
23 | 19, 22 | syl 14 | . 2 β’ ((π β LMod β§ π β π) β (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ β πΎ π = (π Β· π))) |
24 | 7, 23 | bitrd 188 | 1 β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β βπ β πΎ π = (π Β· π))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1364 β wcel 2160 {cab 2175 βwrex 2469 Vcvv 2752 {csn 3607 βcfv 5231 (class class class)co 5891 Basecbs 12480 Scalarcsca 12558 Β·π cvsca 12559 LModclmod 13564 LSpanclspn 13663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-addcom 7929 ax-addass 7931 ax-i2m1 7934 ax-0lt1 7935 ax-0id 7937 ax-rnegex 7938 ax-pre-ltirr 7941 ax-pre-ltadd 7945 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-pnf 8012 df-mnf 8013 df-ltxr 8015 df-inn 8938 df-2 8996 df-3 8997 df-4 8998 df-5 8999 df-6 9000 df-ndx 12483 df-slot 12484 df-base 12486 df-sets 12487 df-plusg 12568 df-mulr 12569 df-sca 12571 df-vsca 12572 df-0g 12729 df-mgm 12798 df-sgrp 12831 df-mnd 12844 df-grp 12914 df-minusg 12915 df-sbg 12916 df-mgp 13236 df-ur 13275 df-ring 13313 df-lmod 13566 df-lssm 13630 df-lsp 13664 |
This theorem is referenced by: lspsnss2 13696 |
Copyright terms: Public domain | W3C validator |