![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspsnel | GIF version |
Description: Member of span of the singleton of a vector. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsn.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lspsn.k | ⊢ 𝐾 = (Base‘𝐹) |
lspsn.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsn.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lspsn.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsnel | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsn.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | lspsn.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
3 | lspsn.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lspsn.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | lspsn.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
6 | 1, 2, 3, 4, 5 | lspsn 13662 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
7 | 6 | eleq2d 2257 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ 𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)})) |
8 | simpr 110 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → 𝑈 = (𝑘 · 𝑋)) | |
9 | vex 2752 | . . . . . . . 8 ⊢ 𝑘 ∈ V | |
10 | vscaslid 12636 | . . . . . . . . . 10 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
11 | 10 | slotex 12503 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) ∈ V) |
12 | 4, 11 | eqeltrid 2274 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → · ∈ V) |
13 | simpr 110 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
14 | ovexg 5922 | . . . . . . . 8 ⊢ ((𝑘 ∈ V ∧ · ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑘 · 𝑋) ∈ V) | |
15 | 9, 12, 13, 14 | mp3an2ani 1354 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑘 · 𝑋) ∈ V) |
16 | 15 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → (𝑘 · 𝑋) ∈ V) |
17 | 8, 16 | eqeltrd 2264 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → 𝑈 ∈ V) |
18 | 17 | ex 115 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V)) |
19 | 18 | rexlimdvw 2608 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V)) |
20 | eqeq1 2194 | . . . . 5 ⊢ (𝑣 = 𝑈 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑈 = (𝑘 · 𝑋))) | |
21 | 20 | rexbidv 2488 | . . . 4 ⊢ (𝑣 = 𝑈 → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
22 | 21 | elab3g 2900 | . . 3 ⊢ ((∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V) → (𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
23 | 19, 22 | syl 14 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
24 | 7, 23 | bitrd 188 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 ∈ wcel 2158 {cab 2173 ∃wrex 2466 Vcvv 2749 {csn 3604 ‘cfv 5228 (class class class)co 5888 Basecbs 12476 Scalarcsca 12554 ·𝑠 cvsca 12555 LModclmod 13533 LSpanclspn 13632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-ltirr 7937 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-plusg 12564 df-mulr 12565 df-sca 12567 df-vsca 12568 df-0g 12725 df-mgm 12794 df-sgrp 12827 df-mnd 12840 df-grp 12909 df-minusg 12910 df-sbg 12911 df-mgp 13230 df-ur 13269 df-ring 13307 df-lmod 13535 df-lssm 13599 df-lsp 13633 |
This theorem is referenced by: lspsnss2 13665 |
Copyright terms: Public domain | W3C validator |