ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemubacc GIF version

Theorem tfrcllemubacc 6445
Description: Lemma for tfrcl 6450. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfrcllembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllembacc.4 (𝜑𝐷𝑋)
tfrcllembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfrcllemubacc (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐷,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑢,𝐵,𝑤   𝐷,,𝑧   𝑢,𝐷,𝑤   𝑤,𝐺   ,𝐺,𝑧   𝑢,𝐺   𝑆,𝑔,,𝑧   𝑧,𝑋   𝑤,𝑔,𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑢)   𝐴(𝑤,𝑢)   𝐵(𝑥,𝑦,𝑓)   𝑆(𝑤,𝑢)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,𝑢,𝑔,)

Proof of Theorem tfrcllemubacc
Dummy variables 𝑒 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.f . . . . . . . . 9 𝐹 = recs(𝐺)
2 tfrcl.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
3 tfrcl.x . . . . . . . . 9 (𝜑 → Ord 𝑋)
4 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
5 tfrcllemsucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
6 tfrcllembacc.3 . . . . . . . . 9 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
7 tfrcllembacc.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
8 tfrcllembacc.4 . . . . . . . . 9 (𝜑𝐷𝑋)
9 tfrcllembacc.5 . . . . . . . . 9 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
101, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembfn 6443 . . . . . . . 8 (𝜑 𝐵:𝐷𝑆)
11 fdm 5431 . . . . . . . 8 ( 𝐵:𝐷𝑆 → dom 𝐵 = 𝐷)
1210, 11syl 14 . . . . . . 7 (𝜑 → dom 𝐵 = 𝐷)
131, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembacc 6441 . . . . . . . . . 10 (𝜑𝐵𝐴)
1413unissd 3874 . . . . . . . . 9 (𝜑 𝐵 𝐴)
155, 3tfrcllemssrecs 6438 . . . . . . . . 9 (𝜑 𝐴 ⊆ recs(𝐺))
1614, 15sstrd 3203 . . . . . . . 8 (𝜑 𝐵 ⊆ recs(𝐺))
17 dmss 4877 . . . . . . . 8 ( 𝐵 ⊆ recs(𝐺) → dom 𝐵 ⊆ dom recs(𝐺))
1816, 17syl 14 . . . . . . 7 (𝜑 → dom 𝐵 ⊆ dom recs(𝐺))
1912, 18eqsstrrd 3230 . . . . . 6 (𝜑𝐷 ⊆ dom recs(𝐺))
2019sselda 3193 . . . . 5 ((𝜑𝑤𝐷) → 𝑤 ∈ dom recs(𝐺))
21 eqid 2205 . . . . . 6 {𝑒 ∣ ∃𝑣 ∈ On (𝑒 Fn 𝑣 ∧ ∀𝑡𝑣 (𝑒𝑡) = (𝐺‘(𝑒𝑡)))} = {𝑒 ∣ ∃𝑣 ∈ On (𝑒 Fn 𝑣 ∧ ∀𝑡𝑣 (𝑒𝑡) = (𝐺‘(𝑒𝑡)))}
2221tfrlem9 6405 . . . . 5 (𝑤 ∈ dom recs(𝐺) → (recs(𝐺)‘𝑤) = (𝐺‘(recs(𝐺) ↾ 𝑤)))
2320, 22syl 14 . . . 4 ((𝜑𝑤𝐷) → (recs(𝐺)‘𝑤) = (𝐺‘(recs(𝐺) ↾ 𝑤)))
24 tfrfun 6406 . . . . 5 Fun recs(𝐺)
2512eleq2d 2275 . . . . . 6 (𝜑 → (𝑤 ∈ dom 𝐵𝑤𝐷))
2625biimpar 297 . . . . 5 ((𝜑𝑤𝐷) → 𝑤 ∈ dom 𝐵)
27 funssfv 5602 . . . . 5 ((Fun recs(𝐺) ∧ 𝐵 ⊆ recs(𝐺) ∧ 𝑤 ∈ dom 𝐵) → (recs(𝐺)‘𝑤) = ( 𝐵𝑤))
2824, 16, 26, 27mp3an2ani 1357 . . . 4 ((𝜑𝑤𝐷) → (recs(𝐺)‘𝑤) = ( 𝐵𝑤))
29 ordelon 4430 . . . . . . . . . 10 ((Ord 𝑋𝐷𝑋) → 𝐷 ∈ On)
303, 8, 29syl2anc 411 . . . . . . . . 9 (𝜑𝐷 ∈ On)
31 eloni 4422 . . . . . . . . 9 (𝐷 ∈ On → Ord 𝐷)
3230, 31syl 14 . . . . . . . 8 (𝜑 → Ord 𝐷)
33 ordelss 4426 . . . . . . . 8 ((Ord 𝐷𝑤𝐷) → 𝑤𝐷)
3432, 33sylan 283 . . . . . . 7 ((𝜑𝑤𝐷) → 𝑤𝐷)
3512adantr 276 . . . . . . 7 ((𝜑𝑤𝐷) → dom 𝐵 = 𝐷)
3634, 35sseqtrrd 3232 . . . . . 6 ((𝜑𝑤𝐷) → 𝑤 ⊆ dom 𝐵)
37 fun2ssres 5314 . . . . . 6 ((Fun recs(𝐺) ∧ 𝐵 ⊆ recs(𝐺) ∧ 𝑤 ⊆ dom 𝐵) → (recs(𝐺) ↾ 𝑤) = ( 𝐵𝑤))
3824, 16, 36, 37mp3an2ani 1357 . . . . 5 ((𝜑𝑤𝐷) → (recs(𝐺) ↾ 𝑤) = ( 𝐵𝑤))
3938fveq2d 5580 . . . 4 ((𝜑𝑤𝐷) → (𝐺‘(recs(𝐺) ↾ 𝑤)) = (𝐺‘( 𝐵𝑤)))
4023, 28, 393eqtr3d 2246 . . 3 ((𝜑𝑤𝐷) → ( 𝐵𝑤) = (𝐺‘( 𝐵𝑤)))
4140ralrimiva 2579 . 2 (𝜑 → ∀𝑤𝐷 ( 𝐵𝑤) = (𝐺‘( 𝐵𝑤)))
42 fveq2 5576 . . . 4 (𝑢 = 𝑤 → ( 𝐵𝑢) = ( 𝐵𝑤))
43 reseq2 4954 . . . . 5 (𝑢 = 𝑤 → ( 𝐵𝑢) = ( 𝐵𝑤))
4443fveq2d 5580 . . . 4 (𝑢 = 𝑤 → (𝐺‘( 𝐵𝑢)) = (𝐺‘( 𝐵𝑤)))
4542, 44eqeq12d 2220 . . 3 (𝑢 = 𝑤 → (( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)) ↔ ( 𝐵𝑤) = (𝐺‘( 𝐵𝑤))))
4645cbvralv 2738 . 2 (∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)) ↔ ∀𝑤𝐷 ( 𝐵𝑤) = (𝐺‘( 𝐵𝑤)))
4741, 46sylibr 134 1 (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1515  wcel 2176  {cab 2191  wral 2484  wrex 2485  cun 3164  wss 3166  {csn 3633  cop 3636   cuni 3850  Ord word 4409  Oncon0 4410  suc csuc 4412  dom cdm 4675  cres 4677  Fun wfun 5265   Fn wfn 5266  wf 5267  cfv 5271  recscrecs 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6391
This theorem is referenced by:  tfrcllemex  6446
  Copyright terms: Public domain W3C validator