ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemubacc GIF version

Theorem tfrcllemubacc 6336
Description: Lemma for tfrcl 6341. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfrcllembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllembacc.4 (𝜑𝐷𝑋)
tfrcllembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfrcllemubacc (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐷,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑢,𝐵,𝑤   𝐷,,𝑧   𝑢,𝐷,𝑤   𝑤,𝐺   ,𝐺,𝑧   𝑢,𝐺   𝑆,𝑔,,𝑧   𝑧,𝑋   𝑤,𝑔,𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑢)   𝐴(𝑤,𝑢)   𝐵(𝑥,𝑦,𝑓)   𝑆(𝑤,𝑢)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,𝑢,𝑔,)

Proof of Theorem tfrcllemubacc
Dummy variables 𝑒 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.f . . . . . . . . 9 𝐹 = recs(𝐺)
2 tfrcl.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
3 tfrcl.x . . . . . . . . 9 (𝜑 → Ord 𝑋)
4 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
5 tfrcllemsucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
6 tfrcllembacc.3 . . . . . . . . 9 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
7 tfrcllembacc.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
8 tfrcllembacc.4 . . . . . . . . 9 (𝜑𝐷𝑋)
9 tfrcllembacc.5 . . . . . . . . 9 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
101, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembfn 6334 . . . . . . . 8 (𝜑 𝐵:𝐷𝑆)
11 fdm 5351 . . . . . . . 8 ( 𝐵:𝐷𝑆 → dom 𝐵 = 𝐷)
1210, 11syl 14 . . . . . . 7 (𝜑 → dom 𝐵 = 𝐷)
131, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembacc 6332 . . . . . . . . . 10 (𝜑𝐵𝐴)
1413unissd 3818 . . . . . . . . 9 (𝜑 𝐵 𝐴)
155, 3tfrcllemssrecs 6329 . . . . . . . . 9 (𝜑 𝐴 ⊆ recs(𝐺))
1614, 15sstrd 3157 . . . . . . . 8 (𝜑 𝐵 ⊆ recs(𝐺))
17 dmss 4808 . . . . . . . 8 ( 𝐵 ⊆ recs(𝐺) → dom 𝐵 ⊆ dom recs(𝐺))
1816, 17syl 14 . . . . . . 7 (𝜑 → dom 𝐵 ⊆ dom recs(𝐺))
1912, 18eqsstrrd 3184 . . . . . 6 (𝜑𝐷 ⊆ dom recs(𝐺))
2019sselda 3147 . . . . 5 ((𝜑𝑤𝐷) → 𝑤 ∈ dom recs(𝐺))
21 eqid 2170 . . . . . 6 {𝑒 ∣ ∃𝑣 ∈ On (𝑒 Fn 𝑣 ∧ ∀𝑡𝑣 (𝑒𝑡) = (𝐺‘(𝑒𝑡)))} = {𝑒 ∣ ∃𝑣 ∈ On (𝑒 Fn 𝑣 ∧ ∀𝑡𝑣 (𝑒𝑡) = (𝐺‘(𝑒𝑡)))}
2221tfrlem9 6296 . . . . 5 (𝑤 ∈ dom recs(𝐺) → (recs(𝐺)‘𝑤) = (𝐺‘(recs(𝐺) ↾ 𝑤)))
2320, 22syl 14 . . . 4 ((𝜑𝑤𝐷) → (recs(𝐺)‘𝑤) = (𝐺‘(recs(𝐺) ↾ 𝑤)))
24 tfrfun 6297 . . . . 5 Fun recs(𝐺)
2512eleq2d 2240 . . . . . 6 (𝜑 → (𝑤 ∈ dom 𝐵𝑤𝐷))
2625biimpar 295 . . . . 5 ((𝜑𝑤𝐷) → 𝑤 ∈ dom 𝐵)
27 funssfv 5520 . . . . 5 ((Fun recs(𝐺) ∧ 𝐵 ⊆ recs(𝐺) ∧ 𝑤 ∈ dom 𝐵) → (recs(𝐺)‘𝑤) = ( 𝐵𝑤))
2824, 16, 26, 27mp3an2ani 1339 . . . 4 ((𝜑𝑤𝐷) → (recs(𝐺)‘𝑤) = ( 𝐵𝑤))
29 ordelon 4366 . . . . . . . . . 10 ((Ord 𝑋𝐷𝑋) → 𝐷 ∈ On)
303, 8, 29syl2anc 409 . . . . . . . . 9 (𝜑𝐷 ∈ On)
31 eloni 4358 . . . . . . . . 9 (𝐷 ∈ On → Ord 𝐷)
3230, 31syl 14 . . . . . . . 8 (𝜑 → Ord 𝐷)
33 ordelss 4362 . . . . . . . 8 ((Ord 𝐷𝑤𝐷) → 𝑤𝐷)
3432, 33sylan 281 . . . . . . 7 ((𝜑𝑤𝐷) → 𝑤𝐷)
3512adantr 274 . . . . . . 7 ((𝜑𝑤𝐷) → dom 𝐵 = 𝐷)
3634, 35sseqtrrd 3186 . . . . . 6 ((𝜑𝑤𝐷) → 𝑤 ⊆ dom 𝐵)
37 fun2ssres 5239 . . . . . 6 ((Fun recs(𝐺) ∧ 𝐵 ⊆ recs(𝐺) ∧ 𝑤 ⊆ dom 𝐵) → (recs(𝐺) ↾ 𝑤) = ( 𝐵𝑤))
3824, 16, 36, 37mp3an2ani 1339 . . . . 5 ((𝜑𝑤𝐷) → (recs(𝐺) ↾ 𝑤) = ( 𝐵𝑤))
3938fveq2d 5498 . . . 4 ((𝜑𝑤𝐷) → (𝐺‘(recs(𝐺) ↾ 𝑤)) = (𝐺‘( 𝐵𝑤)))
4023, 28, 393eqtr3d 2211 . . 3 ((𝜑𝑤𝐷) → ( 𝐵𝑤) = (𝐺‘( 𝐵𝑤)))
4140ralrimiva 2543 . 2 (𝜑 → ∀𝑤𝐷 ( 𝐵𝑤) = (𝐺‘( 𝐵𝑤)))
42 fveq2 5494 . . . 4 (𝑢 = 𝑤 → ( 𝐵𝑢) = ( 𝐵𝑤))
43 reseq2 4884 . . . . 5 (𝑢 = 𝑤 → ( 𝐵𝑢) = ( 𝐵𝑤))
4443fveq2d 5498 . . . 4 (𝑢 = 𝑤 → (𝐺‘( 𝐵𝑢)) = (𝐺‘( 𝐵𝑤)))
4542, 44eqeq12d 2185 . . 3 (𝑢 = 𝑤 → (( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)) ↔ ( 𝐵𝑤) = (𝐺‘( 𝐵𝑤))))
4645cbvralv 2696 . 2 (∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)) ↔ ∀𝑤𝐷 ( 𝐵𝑤) = (𝐺‘( 𝐵𝑤)))
4741, 46sylibr 133 1 (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wex 1485  wcel 2141  {cab 2156  wral 2448  wrex 2449  cun 3119  wss 3121  {csn 3581  cop 3584   cuni 3794  Ord word 4345  Oncon0 4346  suc csuc 4348  dom cdm 4609  cres 4611  Fun wfun 5190   Fn wfn 5191  wf 5192  cfv 5196  recscrecs 6281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-recs 6282
This theorem is referenced by:  tfrcllemex  6337
  Copyright terms: Public domain W3C validator