ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemubacc GIF version

Theorem tfrcllemubacc 6444
Description: Lemma for tfrcl 6449. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfrcllembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllembacc.4 (𝜑𝐷𝑋)
tfrcllembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfrcllemubacc (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐷,𝑓,𝑔,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑢,𝐵,𝑤   𝐷,,𝑧   𝑢,𝐷,𝑤   𝑤,𝐺   ,𝐺,𝑧   𝑢,𝐺   𝑆,𝑔,,𝑧   𝑧,𝑋   𝑤,𝑔,𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑢)   𝐴(𝑤,𝑢)   𝐵(𝑥,𝑦,𝑓)   𝑆(𝑤,𝑢)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔,)   𝐺(𝑔)   𝑋(𝑦,𝑤,𝑢,𝑔,)

Proof of Theorem tfrcllemubacc
Dummy variables 𝑒 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.f . . . . . . . . 9 𝐹 = recs(𝐺)
2 tfrcl.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
3 tfrcl.x . . . . . . . . 9 (𝜑 → Ord 𝑋)
4 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
5 tfrcllemsucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
6 tfrcllembacc.3 . . . . . . . . 9 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
7 tfrcllembacc.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
8 tfrcllembacc.4 . . . . . . . . 9 (𝜑𝐷𝑋)
9 tfrcllembacc.5 . . . . . . . . 9 (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
101, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembfn 6442 . . . . . . . 8 (𝜑 𝐵:𝐷𝑆)
11 fdm 5430 . . . . . . . 8 ( 𝐵:𝐷𝑆 → dom 𝐵 = 𝐷)
1210, 11syl 14 . . . . . . 7 (𝜑 → dom 𝐵 = 𝐷)
131, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembacc 6440 . . . . . . . . . 10 (𝜑𝐵𝐴)
1413unissd 3873 . . . . . . . . 9 (𝜑 𝐵 𝐴)
155, 3tfrcllemssrecs 6437 . . . . . . . . 9 (𝜑 𝐴 ⊆ recs(𝐺))
1614, 15sstrd 3202 . . . . . . . 8 (𝜑 𝐵 ⊆ recs(𝐺))
17 dmss 4876 . . . . . . . 8 ( 𝐵 ⊆ recs(𝐺) → dom 𝐵 ⊆ dom recs(𝐺))
1816, 17syl 14 . . . . . . 7 (𝜑 → dom 𝐵 ⊆ dom recs(𝐺))
1912, 18eqsstrrd 3229 . . . . . 6 (𝜑𝐷 ⊆ dom recs(𝐺))
2019sselda 3192 . . . . 5 ((𝜑𝑤𝐷) → 𝑤 ∈ dom recs(𝐺))
21 eqid 2204 . . . . . 6 {𝑒 ∣ ∃𝑣 ∈ On (𝑒 Fn 𝑣 ∧ ∀𝑡𝑣 (𝑒𝑡) = (𝐺‘(𝑒𝑡)))} = {𝑒 ∣ ∃𝑣 ∈ On (𝑒 Fn 𝑣 ∧ ∀𝑡𝑣 (𝑒𝑡) = (𝐺‘(𝑒𝑡)))}
2221tfrlem9 6404 . . . . 5 (𝑤 ∈ dom recs(𝐺) → (recs(𝐺)‘𝑤) = (𝐺‘(recs(𝐺) ↾ 𝑤)))
2320, 22syl 14 . . . 4 ((𝜑𝑤𝐷) → (recs(𝐺)‘𝑤) = (𝐺‘(recs(𝐺) ↾ 𝑤)))
24 tfrfun 6405 . . . . 5 Fun recs(𝐺)
2512eleq2d 2274 . . . . . 6 (𝜑 → (𝑤 ∈ dom 𝐵𝑤𝐷))
2625biimpar 297 . . . . 5 ((𝜑𝑤𝐷) → 𝑤 ∈ dom 𝐵)
27 funssfv 5601 . . . . 5 ((Fun recs(𝐺) ∧ 𝐵 ⊆ recs(𝐺) ∧ 𝑤 ∈ dom 𝐵) → (recs(𝐺)‘𝑤) = ( 𝐵𝑤))
2824, 16, 26, 27mp3an2ani 1356 . . . 4 ((𝜑𝑤𝐷) → (recs(𝐺)‘𝑤) = ( 𝐵𝑤))
29 ordelon 4429 . . . . . . . . . 10 ((Ord 𝑋𝐷𝑋) → 𝐷 ∈ On)
303, 8, 29syl2anc 411 . . . . . . . . 9 (𝜑𝐷 ∈ On)
31 eloni 4421 . . . . . . . . 9 (𝐷 ∈ On → Ord 𝐷)
3230, 31syl 14 . . . . . . . 8 (𝜑 → Ord 𝐷)
33 ordelss 4425 . . . . . . . 8 ((Ord 𝐷𝑤𝐷) → 𝑤𝐷)
3432, 33sylan 283 . . . . . . 7 ((𝜑𝑤𝐷) → 𝑤𝐷)
3512adantr 276 . . . . . . 7 ((𝜑𝑤𝐷) → dom 𝐵 = 𝐷)
3634, 35sseqtrrd 3231 . . . . . 6 ((𝜑𝑤𝐷) → 𝑤 ⊆ dom 𝐵)
37 fun2ssres 5313 . . . . . 6 ((Fun recs(𝐺) ∧ 𝐵 ⊆ recs(𝐺) ∧ 𝑤 ⊆ dom 𝐵) → (recs(𝐺) ↾ 𝑤) = ( 𝐵𝑤))
3824, 16, 36, 37mp3an2ani 1356 . . . . 5 ((𝜑𝑤𝐷) → (recs(𝐺) ↾ 𝑤) = ( 𝐵𝑤))
3938fveq2d 5579 . . . 4 ((𝜑𝑤𝐷) → (𝐺‘(recs(𝐺) ↾ 𝑤)) = (𝐺‘( 𝐵𝑤)))
4023, 28, 393eqtr3d 2245 . . 3 ((𝜑𝑤𝐷) → ( 𝐵𝑤) = (𝐺‘( 𝐵𝑤)))
4140ralrimiva 2578 . 2 (𝜑 → ∀𝑤𝐷 ( 𝐵𝑤) = (𝐺‘( 𝐵𝑤)))
42 fveq2 5575 . . . 4 (𝑢 = 𝑤 → ( 𝐵𝑢) = ( 𝐵𝑤))
43 reseq2 4953 . . . . 5 (𝑢 = 𝑤 → ( 𝐵𝑢) = ( 𝐵𝑤))
4443fveq2d 5579 . . . 4 (𝑢 = 𝑤 → (𝐺‘( 𝐵𝑢)) = (𝐺‘( 𝐵𝑤)))
4542, 44eqeq12d 2219 . . 3 (𝑢 = 𝑤 → (( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)) ↔ ( 𝐵𝑤) = (𝐺‘( 𝐵𝑤))))
4645cbvralv 2737 . 2 (∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)) ↔ ∀𝑤𝐷 ( 𝐵𝑤) = (𝐺‘( 𝐵𝑤)))
4741, 46sylibr 134 1 (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wex 1514  wcel 2175  {cab 2190  wral 2483  wrex 2484  cun 3163  wss 3165  {csn 3632  cop 3635   cuni 3849  Ord word 4408  Oncon0 4409  suc csuc 4411  dom cdm 4674  cres 4676  Fun wfun 5264   Fn wfn 5265  wf 5266  cfv 5270  recscrecs 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-recs 6390
This theorem is referenced by:  tfrcllemex  6445
  Copyright terms: Public domain W3C validator