Step | Hyp | Ref
| Expression |
1 | | inss1 3357 |
. . . . . . . . . 10
β’ (π’ β© π) β π’ |
2 | | metrest.3 |
. . . . . . . . . . . . 13
β’ π½ = (MetOpenβπΆ) |
3 | 2 | elmopn2 13988 |
. . . . . . . . . . . 12
β’ (πΆ β (βMetβπ) β (π’ β π½ β (π’ β π β§ βπ¦ β π’ βπ β β+ (π¦(ballβπΆ)π) β π’))) |
4 | 3 | simplbda 384 |
. . . . . . . . . . 11
β’ ((πΆ β (βMetβπ) β§ π’ β π½) β βπ¦ β π’ βπ β β+ (π¦(ballβπΆ)π) β π’) |
5 | 4 | adantlr 477 |
. . . . . . . . . 10
β’ (((πΆ β (βMetβπ) β§ π β π) β§ π’ β π½) β βπ¦ β π’ βπ β β+ (π¦(ballβπΆ)π) β π’) |
6 | | ssralv 3221 |
. . . . . . . . . 10
β’ ((π’ β© π) β π’ β (βπ¦ β π’ βπ β β+ (π¦(ballβπΆ)π) β π’ β βπ¦ β (π’ β© π)βπ β β+ (π¦(ballβπΆ)π) β π’)) |
7 | 1, 5, 6 | mpsyl 65 |
. . . . . . . . 9
β’ (((πΆ β (βMetβπ) β§ π β π) β§ π’ β π½) β βπ¦ β (π’ β© π)βπ β β+ (π¦(ballβπΆ)π) β π’) |
8 | | ssrin 3362 |
. . . . . . . . . . 11
β’ ((π¦(ballβπΆ)π) β π’ β ((π¦(ballβπΆ)π) β© π) β (π’ β© π)) |
9 | 8 | reximi 2574 |
. . . . . . . . . 10
β’
(βπ β
β+ (π¦(ballβπΆ)π) β π’ β βπ β β+ ((π¦(ballβπΆ)π) β© π) β (π’ β© π)) |
10 | 9 | ralimi 2540 |
. . . . . . . . 9
β’
(βπ¦ β
(π’ β© π)βπ β β+ (π¦(ballβπΆ)π) β π’ β βπ¦ β (π’ β© π)βπ β β+ ((π¦(ballβπΆ)π) β© π) β (π’ β© π)) |
11 | 7, 10 | syl 14 |
. . . . . . . 8
β’ (((πΆ β (βMetβπ) β§ π β π) β§ π’ β π½) β βπ¦ β (π’ β© π)βπ β β+ ((π¦(ballβπΆ)π) β© π) β (π’ β© π)) |
12 | | inss2 3358 |
. . . . . . . 8
β’ (π’ β© π) β π |
13 | 11, 12 | jctil 312 |
. . . . . . 7
β’ (((πΆ β (βMetβπ) β§ π β π) β§ π’ β π½) β ((π’ β© π) β π β§ βπ¦ β (π’ β© π)βπ β β+ ((π¦(ballβπΆ)π) β© π) β (π’ β© π))) |
14 | | sseq1 3180 |
. . . . . . . 8
β’ (π₯ = (π’ β© π) β (π₯ β π β (π’ β© π) β π)) |
15 | | sseq2 3181 |
. . . . . . . . . 10
β’ (π₯ = (π’ β© π) β (((π¦(ballβπΆ)π) β© π) β π₯ β ((π¦(ballβπΆ)π) β© π) β (π’ β© π))) |
16 | 15 | rexbidv 2478 |
. . . . . . . . 9
β’ (π₯ = (π’ β© π) β (βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯ β βπ β β+ ((π¦(ballβπΆ)π) β© π) β (π’ β© π))) |
17 | 16 | raleqbi1dv 2681 |
. . . . . . . 8
β’ (π₯ = (π’ β© π) β (βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯ β βπ¦ β (π’ β© π)βπ β β+ ((π¦(ballβπΆ)π) β© π) β (π’ β© π))) |
18 | 14, 17 | anbi12d 473 |
. . . . . . 7
β’ (π₯ = (π’ β© π) β ((π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯) β ((π’ β© π) β π β§ βπ¦ β (π’ β© π)βπ β β+ ((π¦(ballβπΆ)π) β© π) β (π’ β© π)))) |
19 | 13, 18 | syl5ibrcom 157 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π β π) β§ π’ β π½) β (π₯ = (π’ β© π) β (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯))) |
20 | 19 | rexlimdva 2594 |
. . . . 5
β’ ((πΆ β (βMetβπ) β§ π β π) β (βπ’ β π½ π₯ = (π’ β© π) β (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯))) |
21 | 2 | mopntop 13983 |
. . . . . . . . 9
β’ (πΆ β (βMetβπ) β π½ β Top) |
22 | 21 | ad2antrr 488 |
. . . . . . . 8
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β π½ β Top) |
23 | | ssel2 3152 |
. . . . . . . . . . . . . 14
β’ ((π₯ β π β§ π¦ β π₯) β π¦ β π) |
24 | | ssel2 3152 |
. . . . . . . . . . . . . . . 16
β’ ((π β π β§ π¦ β π) β π¦ β π) |
25 | | rpxr 9663 |
. . . . . . . . . . . . . . . . . 18
β’ (π β β+
β π β
β*) |
26 | 2 | blopn 14029 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((πΆ β (βMetβπ) β§ π¦ β π β§ π β β*) β (π¦(ballβπΆ)π) β π½) |
27 | | eleq1a 2249 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π¦(ballβπΆ)π) β π½ β (π§ = (π¦(ballβπΆ)π) β π§ β π½)) |
28 | 26, 27 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΆ β (βMetβπ) β§ π¦ β π β§ π β β*) β (π§ = (π¦(ballβπΆ)π) β π§ β π½)) |
29 | 28 | 3expa 1203 |
. . . . . . . . . . . . . . . . . 18
β’ (((πΆ β (βMetβπ) β§ π¦ β π) β§ π β β*) β (π§ = (π¦(ballβπΆ)π) β π§ β π½)) |
30 | 25, 29 | sylan2 286 |
. . . . . . . . . . . . . . . . 17
β’ (((πΆ β (βMetβπ) β§ π¦ β π) β§ π β β+) β (π§ = (π¦(ballβπΆ)π) β π§ β π½)) |
31 | 30 | rexlimdva 2594 |
. . . . . . . . . . . . . . . 16
β’ ((πΆ β (βMetβπ) β§ π¦ β π) β (βπ β β+ π§ = (π¦(ballβπΆ)π) β π§ β π½)) |
32 | 24, 31 | sylan2 286 |
. . . . . . . . . . . . . . 15
β’ ((πΆ β (βMetβπ) β§ (π β π β§ π¦ β π)) β (βπ β β+ π§ = (π¦(ballβπΆ)π) β π§ β π½)) |
33 | 32 | anassrs 400 |
. . . . . . . . . . . . . 14
β’ (((πΆ β (βMetβπ) β§ π β π) β§ π¦ β π) β (βπ β β+ π§ = (π¦(ballβπΆ)π) β π§ β π½)) |
34 | 23, 33 | sylan2 286 |
. . . . . . . . . . . . 13
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ π¦ β π₯)) β (βπ β β+ π§ = (π¦(ballβπΆ)π) β π§ β π½)) |
35 | 34 | anassrs 400 |
. . . . . . . . . . . 12
β’ ((((πΆ β (βMetβπ) β§ π β π) β§ π₯ β π) β§ π¦ β π₯) β (βπ β β+ π§ = (π¦(ballβπΆ)π) β π§ β π½)) |
36 | 35 | rexlimdva 2594 |
. . . . . . . . . . 11
β’ (((πΆ β (βMetβπ) β§ π β π) β§ π₯ β π) β (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β π§ β π½)) |
37 | 36 | adantrd 279 |
. . . . . . . . . 10
β’ (((πΆ β (βMetβπ) β§ π β π) β§ π₯ β π) β ((βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯) β π§ β π½)) |
38 | 37 | adantrr 479 |
. . . . . . . . 9
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β ((βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯) β π§ β π½)) |
39 | 38 | abssdv 3231 |
. . . . . . . 8
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β π½) |
40 | | uniopn 13540 |
. . . . . . . 8
β’ ((π½ β Top β§ {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β π½) β βͺ {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β π½) |
41 | 22, 39, 40 | syl2anc 411 |
. . . . . . 7
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β βͺ {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β π½) |
42 | | oveq1 5884 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ = π’ β (π¦(ballβπΆ)π) = (π’(ballβπΆ)π)) |
43 | 42 | ineq1d 3337 |
. . . . . . . . . . . . . . . . 17
β’ (π¦ = π’ β ((π¦(ballβπΆ)π) β© π) = ((π’(ballβπΆ)π) β© π)) |
44 | 43 | sseq1d 3186 |
. . . . . . . . . . . . . . . 16
β’ (π¦ = π’ β (((π¦(ballβπΆ)π) β© π) β π₯ β ((π’(ballβπΆ)π) β© π) β π₯)) |
45 | 44 | rexbidv 2478 |
. . . . . . . . . . . . . . 15
β’ (π¦ = π’ β (βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯ β βπ β β+ ((π’(ballβπΆ)π) β© π) β π₯)) |
46 | 45 | rspccv 2840 |
. . . . . . . . . . . . . 14
β’
(βπ¦ β
π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯ β (π’ β π₯ β βπ β β+ ((π’(ballβπΆ)π) β© π) β π₯)) |
47 | 46 | ad2antll 491 |
. . . . . . . . . . . . 13
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β (π’ β π₯ β βπ β β+ ((π’(ballβπΆ)π) β© π) β π₯)) |
48 | | ssel 3151 |
. . . . . . . . . . . . . . 15
β’ (π₯ β π β (π’ β π₯ β π’ β π)) |
49 | | ssel 3151 |
. . . . . . . . . . . . . . . 16
β’ (π β π β (π’ β π β π’ β π)) |
50 | | blcntr 13955 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((πΆ β (βMetβπ) β§ π’ β π β§ π β β+) β π’ β (π’(ballβπΆ)π)) |
51 | 50 | a1d 22 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((πΆ β (βMetβπ) β§ π’ β π β§ π β β+) β (((π’(ballβπΆ)π) β© π) β π₯ β π’ β (π’(ballβπΆ)π))) |
52 | 51 | ancld 325 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΆ β (βMetβπ) β§ π’ β π β§ π β β+) β (((π’(ballβπΆ)π) β© π) β π₯ β (((π’(ballβπΆ)π) β© π) β π₯ β§ π’ β (π’(ballβπΆ)π)))) |
53 | 52 | 3expa 1203 |
. . . . . . . . . . . . . . . . . 18
β’ (((πΆ β (βMetβπ) β§ π’ β π) β§ π β β+) β (((π’(ballβπΆ)π) β© π) β π₯ β (((π’(ballβπΆ)π) β© π) β π₯ β§ π’ β (π’(ballβπΆ)π)))) |
54 | 53 | reximdva 2579 |
. . . . . . . . . . . . . . . . 17
β’ ((πΆ β (βMetβπ) β§ π’ β π) β (βπ β β+ ((π’(ballβπΆ)π) β© π) β π₯ β βπ β β+ (((π’(ballβπΆ)π) β© π) β π₯ β§ π’ β (π’(ballβπΆ)π)))) |
55 | 54 | ex 115 |
. . . . . . . . . . . . . . . 16
β’ (πΆ β (βMetβπ) β (π’ β π β (βπ β β+ ((π’(ballβπΆ)π) β© π) β π₯ β βπ β β+ (((π’(ballβπΆ)π) β© π) β π₯ β§ π’ β (π’(ballβπΆ)π))))) |
56 | 49, 55 | sylan9r 410 |
. . . . . . . . . . . . . . 15
β’ ((πΆ β (βMetβπ) β§ π β π) β (π’ β π β (βπ β β+ ((π’(ballβπΆ)π) β© π) β π₯ β βπ β β+ (((π’(ballβπΆ)π) β© π) β π₯ β§ π’ β (π’(ballβπΆ)π))))) |
57 | 48, 56 | sylan9r 410 |
. . . . . . . . . . . . . 14
β’ (((πΆ β (βMetβπ) β§ π β π) β§ π₯ β π) β (π’ β π₯ β (βπ β β+ ((π’(ballβπΆ)π) β© π) β π₯ β βπ β β+ (((π’(ballβπΆ)π) β© π) β π₯ β§ π’ β (π’(ballβπΆ)π))))) |
58 | 57 | adantrr 479 |
. . . . . . . . . . . . 13
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β (π’ β π₯ β (βπ β β+ ((π’(ballβπΆ)π) β© π) β π₯ β βπ β β+ (((π’(ballβπΆ)π) β© π) β π₯ β§ π’ β (π’(ballβπΆ)π))))) |
59 | 47, 58 | mpdd 41 |
. . . . . . . . . . . 12
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β (π’ β π₯ β βπ β β+ (((π’(ballβπΆ)π) β© π) β π₯ β§ π’ β (π’(ballβπΆ)π)))) |
60 | 42 | eleq2d 2247 |
. . . . . . . . . . . . . . . 16
β’ (π¦ = π’ β (π’ β (π¦(ballβπΆ)π) β π’ β (π’(ballβπΆ)π))) |
61 | 44, 60 | anbi12d 473 |
. . . . . . . . . . . . . . 15
β’ (π¦ = π’ β ((((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β (((π’(ballβπΆ)π) β© π) β π₯ β§ π’ β (π’(ballβπΆ)π)))) |
62 | 61 | rexbidv 2478 |
. . . . . . . . . . . . . 14
β’ (π¦ = π’ β (βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β βπ β β+ (((π’(ballβπΆ)π) β© π) β π₯ β§ π’ β (π’(ballβπΆ)π)))) |
63 | 62 | rspcev 2843 |
. . . . . . . . . . . . 13
β’ ((π’ β π₯ β§ βπ β β+ (((π’(ballβπΆ)π) β© π) β π₯ β§ π’ β (π’(ballβπΆ)π))) β βπ¦ β π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π))) |
64 | 63 | ex 115 |
. . . . . . . . . . . 12
β’ (π’ β π₯ β (βπ β β+ (((π’(ballβπΆ)π) β© π) β π₯ β§ π’ β (π’(ballβπΆ)π)) β βπ¦ β π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)))) |
65 | 59, 64 | sylcom 28 |
. . . . . . . . . . 11
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β (π’ β π₯ β βπ¦ β π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)))) |
66 | | simprl 529 |
. . . . . . . . . . . 12
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β π₯ β π) |
67 | 66 | sseld 3156 |
. . . . . . . . . . 11
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β (π’ β π₯ β π’ β π)) |
68 | 65, 67 | jcad 307 |
. . . . . . . . . 10
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β (π’ β π₯ β (βπ¦ β π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β§ π’ β π))) |
69 | | elin 3320 |
. . . . . . . . . . . . . . 15
β’ (π’ β ((π¦(ballβπΆ)π) β© π) β (π’ β (π¦(ballβπΆ)π) β§ π’ β π)) |
70 | | ssel2 3152 |
. . . . . . . . . . . . . . 15
β’ ((((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β ((π¦(ballβπΆ)π) β© π)) β π’ β π₯) |
71 | 69, 70 | sylan2br 288 |
. . . . . . . . . . . . . 14
β’ ((((π¦(ballβπΆ)π) β© π) β π₯ β§ (π’ β (π¦(ballβπΆ)π) β§ π’ β π)) β π’ β π₯) |
72 | 71 | expr 375 |
. . . . . . . . . . . . 13
β’ ((((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β (π’ β π β π’ β π₯)) |
73 | 72 | rexlimivw 2590 |
. . . . . . . . . . . 12
β’
(βπ β
β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β (π’ β π β π’ β π₯)) |
74 | 73 | rexlimivw 2590 |
. . . . . . . . . . 11
β’
(βπ¦ β
π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β (π’ β π β π’ β π₯)) |
75 | 74 | imp 124 |
. . . . . . . . . 10
β’
((βπ¦ β
π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β§ π’ β π) β π’ β π₯) |
76 | 68, 75 | impbid1 142 |
. . . . . . . . 9
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β (π’ β π₯ β (βπ¦ β π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β§ π’ β π))) |
77 | | elin 3320 |
. . . . . . . . . . 11
β’ (π’ β (βͺ {π§
β£ (βπ¦ β
π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β© π) β (π’ β βͺ {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β§ π’ β π)) |
78 | | eluniab 3823 |
. . . . . . . . . . . . . 14
β’ (π’ β βͺ {π§
β£ (βπ¦ β
π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β βπ§(π’ β π§ β§ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯))) |
79 | | ancom 266 |
. . . . . . . . . . . . . . . 16
β’ ((π’ β π§ β§ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)) β ((βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯) β§ π’ β π§)) |
80 | | anass 401 |
. . . . . . . . . . . . . . . 16
β’
(((βπ¦ β
π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯) β§ π’ β π§) β (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§))) |
81 | | r19.41v 2633 |
. . . . . . . . . . . . . . . . . 18
β’
(βπ β
β+ (π§ =
(π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§)) β (βπ β β+ π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§))) |
82 | 81 | rexbii 2484 |
. . . . . . . . . . . . . . . . 17
β’
(βπ¦ β
π₯ βπ β β+ (π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§)) β βπ¦ β π₯ (βπ β β+ π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§))) |
83 | | r19.41v 2633 |
. . . . . . . . . . . . . . . . 17
β’
(βπ¦ β
π₯ (βπ β β+
π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§)) β (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§))) |
84 | 82, 83 | bitr2i 185 |
. . . . . . . . . . . . . . . 16
β’
((βπ¦ β
π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§)) β βπ¦ β π₯ βπ β β+ (π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§))) |
85 | 79, 80, 84 | 3bitri 206 |
. . . . . . . . . . . . . . 15
β’ ((π’ β π§ β§ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)) β βπ¦ β π₯ βπ β β+ (π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§))) |
86 | 85 | exbii 1605 |
. . . . . . . . . . . . . 14
β’
(βπ§(π’ β π§ β§ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)) β βπ§βπ¦ β π₯ βπ β β+ (π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§))) |
87 | 78, 86 | bitri 184 |
. . . . . . . . . . . . 13
β’ (π’ β βͺ {π§
β£ (βπ¦ β
π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β βπ§βπ¦ β π₯ βπ β β+ (π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§))) |
88 | | vex 2742 |
. . . . . . . . . . . . . . . . . . 19
β’ π¦ β V |
89 | | blex 13926 |
. . . . . . . . . . . . . . . . . . 19
β’ (πΆ β (βMetβπ) β (ballβπΆ) β V) |
90 | | vex 2742 |
. . . . . . . . . . . . . . . . . . . 20
β’ π β V |
91 | 90 | a1i 9 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΆ β (βMetβπ) β§ π β π) β π β V) |
92 | | ovexg 5911 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π¦ β V β§
(ballβπΆ) β V
β§ π β V) β
(π¦(ballβπΆ)π) β V) |
93 | 88, 89, 91, 92 | mp3an2ani 1344 |
. . . . . . . . . . . . . . . . . 18
β’ ((πΆ β (βMetβπ) β§ π β π) β (π¦(ballβπΆ)π) β V) |
94 | | ineq1 3331 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π§ = (π¦(ballβπΆ)π) β (π§ β© π) = ((π¦(ballβπΆ)π) β© π)) |
95 | 94 | sseq1d 3186 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π§ = (π¦(ballβπΆ)π) β ((π§ β© π) β π₯ β ((π¦(ballβπΆ)π) β© π) β π₯)) |
96 | | eleq2 2241 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π§ = (π¦(ballβπΆ)π) β (π’ β π§ β π’ β (π¦(ballβπΆ)π))) |
97 | 95, 96 | anbi12d 473 |
. . . . . . . . . . . . . . . . . . 19
β’ (π§ = (π¦(ballβπΆ)π) β (((π§ β© π) β π₯ β§ π’ β π§) β (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)))) |
98 | 97 | ceqsexgv 2868 |
. . . . . . . . . . . . . . . . . 18
β’ ((π¦(ballβπΆ)π) β V β (βπ§(π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§)) β (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)))) |
99 | 93, 98 | syl 14 |
. . . . . . . . . . . . . . . . 17
β’ ((πΆ β (βMetβπ) β§ π β π) β (βπ§(π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§)) β (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)))) |
100 | 99 | rexbidv 2478 |
. . . . . . . . . . . . . . . 16
β’ ((πΆ β (βMetβπ) β§ π β π) β (βπ β β+ βπ§(π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§)) β βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)))) |
101 | | rexcom4 2762 |
. . . . . . . . . . . . . . . 16
β’
(βπ β
β+ βπ§(π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§)) β βπ§βπ β β+ (π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§))) |
102 | 100, 101 | bitr3di 195 |
. . . . . . . . . . . . . . 15
β’ ((πΆ β (βMetβπ) β§ π β π) β (βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β βπ§βπ β β+ (π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§)))) |
103 | 102 | rexbidv 2478 |
. . . . . . . . . . . . . 14
β’ ((πΆ β (βMetβπ) β§ π β π) β (βπ¦ β π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β βπ¦ β π₯ βπ§βπ β β+ (π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§)))) |
104 | | rexcom4 2762 |
. . . . . . . . . . . . . 14
β’
(βπ¦ β
π₯ βπ§βπ β β+ (π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§)) β βπ§βπ¦ β π₯ βπ β β+ (π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§))) |
105 | 103, 104 | bitr2di 197 |
. . . . . . . . . . . . 13
β’ ((πΆ β (βMetβπ) β§ π β π) β (βπ§βπ¦ β π₯ βπ β β+ (π§ = (π¦(ballβπΆ)π) β§ ((π§ β© π) β π₯ β§ π’ β π§)) β βπ¦ β π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)))) |
106 | 87, 105 | bitrid 192 |
. . . . . . . . . . . 12
β’ ((πΆ β (βMetβπ) β§ π β π) β (π’ β βͺ {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β βπ¦ β π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)))) |
107 | 106 | anbi1d 465 |
. . . . . . . . . . 11
β’ ((πΆ β (βMetβπ) β§ π β π) β ((π’ β βͺ {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β§ π’ β π) β (βπ¦ β π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β§ π’ β π))) |
108 | 77, 107 | bitr2id 193 |
. . . . . . . . . 10
β’ ((πΆ β (βMetβπ) β§ π β π) β ((βπ¦ β π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β§ π’ β π) β π’ β (βͺ {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β© π))) |
109 | 108 | adantr 276 |
. . . . . . . . 9
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β ((βπ¦ β π₯ βπ β β+ (((π¦(ballβπΆ)π) β© π) β π₯ β§ π’ β (π¦(ballβπΆ)π)) β§ π’ β π) β π’ β (βͺ {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β© π))) |
110 | 76, 109 | bitrd 188 |
. . . . . . . 8
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β (π’ β π₯ β π’ β (βͺ {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β© π))) |
111 | 110 | eqrdv 2175 |
. . . . . . 7
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β π₯ = (βͺ {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β© π)) |
112 | | ineq1 3331 |
. . . . . . . 8
β’ (π’ = βͺ
{π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β (π’ β© π) = (βͺ {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β© π)) |
113 | 112 | rspceeqv 2861 |
. . . . . . 7
β’ ((βͺ {π§
β£ (βπ¦ β
π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β π½ β§ π₯ = (βͺ {π§ β£ (βπ¦ β π₯ βπ β β+ π§ = (π¦(ballβπΆ)π) β§ (π§ β© π) β π₯)} β© π)) β βπ’ β π½ π₯ = (π’ β© π)) |
114 | 41, 111, 113 | syl2anc 411 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) β βπ’ β π½ π₯ = (π’ β© π)) |
115 | 114 | ex 115 |
. . . . 5
β’ ((πΆ β (βMetβπ) β§ π β π) β ((π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯) β βπ’ β π½ π₯ = (π’ β© π))) |
116 | 20, 115 | impbid 129 |
. . . 4
β’ ((πΆ β (βMetβπ) β§ π β π) β (βπ’ β π½ π₯ = (π’ β© π) β (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯))) |
117 | | simpr 110 |
. . . . . . . . . . 11
β’ ((π β π β§ π¦ β π) β π¦ β π) |
118 | 24, 117 | elind 3322 |
. . . . . . . . . 10
β’ ((π β π β§ π¦ β π) β π¦ β (π β© π)) |
119 | | metrest.1 |
. . . . . . . . . . . . . . 15
β’ π· = (πΆ βΎ (π Γ π)) |
120 | 119 | blres 13973 |
. . . . . . . . . . . . . 14
β’ ((πΆ β (βMetβπ) β§ π¦ β (π β© π) β§ π β β*) β (π¦(ballβπ·)π) = ((π¦(ballβπΆ)π) β© π)) |
121 | 120 | sseq1d 3186 |
. . . . . . . . . . . . 13
β’ ((πΆ β (βMetβπ) β§ π¦ β (π β© π) β§ π β β*) β ((π¦(ballβπ·)π) β π₯ β ((π¦(ballβπΆ)π) β© π) β π₯)) |
122 | 121 | 3expa 1203 |
. . . . . . . . . . . 12
β’ (((πΆ β (βMetβπ) β§ π¦ β (π β© π)) β§ π β β*) β ((π¦(ballβπ·)π) β π₯ β ((π¦(ballβπΆ)π) β© π) β π₯)) |
123 | 25, 122 | sylan2 286 |
. . . . . . . . . . 11
β’ (((πΆ β (βMetβπ) β§ π¦ β (π β© π)) β§ π β β+) β ((π¦(ballβπ·)π) β π₯ β ((π¦(ballβπΆ)π) β© π) β π₯)) |
124 | 123 | rexbidva 2474 |
. . . . . . . . . 10
β’ ((πΆ β (βMetβπ) β§ π¦ β (π β© π)) β (βπ β β+ (π¦(ballβπ·)π) β π₯ β βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) |
125 | 118, 124 | sylan2 286 |
. . . . . . . . 9
β’ ((πΆ β (βMetβπ) β§ (π β π β§ π¦ β π)) β (βπ β β+ (π¦(ballβπ·)π) β π₯ β βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) |
126 | 125 | anassrs 400 |
. . . . . . . 8
β’ (((πΆ β (βMetβπ) β§ π β π) β§ π¦ β π) β (βπ β β+ (π¦(ballβπ·)π) β π₯ β βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) |
127 | 23, 126 | sylan2 286 |
. . . . . . 7
β’ (((πΆ β (βMetβπ) β§ π β π) β§ (π₯ β π β§ π¦ β π₯)) β (βπ β β+ (π¦(ballβπ·)π) β π₯ β βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) |
128 | 127 | anassrs 400 |
. . . . . 6
β’ ((((πΆ β (βMetβπ) β§ π β π) β§ π₯ β π) β§ π¦ β π₯) β (βπ β β+ (π¦(ballβπ·)π) β π₯ β βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) |
129 | 128 | ralbidva 2473 |
. . . . 5
β’ (((πΆ β (βMetβπ) β§ π β π) β§ π₯ β π) β (βπ¦ β π₯ βπ β β+ (π¦(ballβπ·)π) β π₯ β βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯)) |
130 | 129 | pm5.32da 452 |
. . . 4
β’ ((πΆ β (βMetβπ) β§ π β π) β ((π₯ β π β§ βπ¦ β π₯ βπ β β+ (π¦(ballβπ·)π) β π₯) β (π₯ β π β§ βπ¦ β π₯ βπ β β+ ((π¦(ballβπΆ)π) β© π) β π₯))) |
131 | 116, 130 | bitr4d 191 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π β π) β (βπ’ β π½ π₯ = (π’ β© π) β (π₯ β π β§ βπ¦ β π₯ βπ β β+ (π¦(ballβπ·)π) β π₯))) |
132 | 21 | adantr 276 |
. . . 4
β’ ((πΆ β (βMetβπ) β§ π β π) β π½ β Top) |
133 | | id 19 |
. . . . 5
β’ (π β π β π β π) |
134 | 2 | mopnm 13987 |
. . . . 5
β’ (πΆ β (βMetβπ) β π β π½) |
135 | | ssexg 4144 |
. . . . 5
β’ ((π β π β§ π β π½) β π β V) |
136 | 133, 134,
135 | syl2anr 290 |
. . . 4
β’ ((πΆ β (βMetβπ) β§ π β π) β π β V) |
137 | | elrest 12700 |
. . . 4
β’ ((π½ β Top β§ π β V) β (π₯ β (π½ βΎt π) β βπ’ β π½ π₯ = (π’ β© π))) |
138 | 132, 136,
137 | syl2anc 411 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π β π) β (π₯ β (π½ βΎt π) β βπ’ β π½ π₯ = (π’ β© π))) |
139 | | xmetres2 13918 |
. . . . 5
β’ ((πΆ β (βMetβπ) β§ π β π) β (πΆ βΎ (π Γ π)) β (βMetβπ)) |
140 | 119, 139 | eqeltrid 2264 |
. . . 4
β’ ((πΆ β (βMetβπ) β§ π β π) β π· β (βMetβπ)) |
141 | | metrest.4 |
. . . . 5
β’ πΎ = (MetOpenβπ·) |
142 | 141 | elmopn2 13988 |
. . . 4
β’ (π· β (βMetβπ) β (π₯ β πΎ β (π₯ β π β§ βπ¦ β π₯ βπ β β+ (π¦(ballβπ·)π) β π₯))) |
143 | 140, 142 | syl 14 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π β π) β (π₯ β πΎ β (π₯ β π β§ βπ¦ β π₯ βπ β β+ (π¦(ballβπ·)π) β π₯))) |
144 | 131, 138,
143 | 3bitr4d 220 |
. 2
β’ ((πΆ β (βMetβπ) β§ π β π) β (π₯ β (π½ βΎt π) β π₯ β πΎ)) |
145 | 144 | eqrdv 2175 |
1
β’ ((πΆ β (βMetβπ) β§ π β π) β (π½ βΎt π) = πΎ) |