Step | Hyp | Ref
| Expression |
1 | | inss1 3342 |
. . . . . . . . . 10
⊢ (𝑢 ∩ 𝑌) ⊆ 𝑢 |
2 | | metrest.3 |
. . . . . . . . . . . . 13
⊢ 𝐽 = (MetOpen‘𝐶) |
3 | 2 | elmopn2 13089 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (∞Met‘𝑋) → (𝑢 ∈ 𝐽 ↔ (𝑢 ⊆ 𝑋 ∧ ∀𝑦 ∈ 𝑢 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢))) |
4 | 3 | simplbda 382 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ 𝑢 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢) |
5 | 4 | adantlr 469 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ 𝑢 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢) |
6 | | ssralv 3206 |
. . . . . . . . . 10
⊢ ((𝑢 ∩ 𝑌) ⊆ 𝑢 → (∀𝑦 ∈ 𝑢 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)) |
7 | 1, 5, 6 | mpsyl 65 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢) |
8 | | ssrin 3347 |
. . . . . . . . . . 11
⊢ ((𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)) |
9 | 8 | reximi 2563 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)) |
10 | 9 | ralimi 2529 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
(𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)) |
11 | 7, 10 | syl 14 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)) |
12 | | inss2 3343 |
. . . . . . . 8
⊢ (𝑢 ∩ 𝑌) ⊆ 𝑌 |
13 | 11, 12 | jctil 310 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → ((𝑢 ∩ 𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌))) |
14 | | sseq1 3165 |
. . . . . . . 8
⊢ (𝑥 = (𝑢 ∩ 𝑌) → (𝑥 ⊆ 𝑌 ↔ (𝑢 ∩ 𝑌) ⊆ 𝑌)) |
15 | | sseq2 3166 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑢 ∩ 𝑌) → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌))) |
16 | 15 | rexbidv 2467 |
. . . . . . . . 9
⊢ (𝑥 = (𝑢 ∩ 𝑌) → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌))) |
17 | 16 | raleqbi1dv 2669 |
. . . . . . . 8
⊢ (𝑥 = (𝑢 ∩ 𝑌) → (∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌))) |
18 | 14, 17 | anbi12d 465 |
. . . . . . 7
⊢ (𝑥 = (𝑢 ∩ 𝑌) → ((𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) ↔ ((𝑢 ∩ 𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)))) |
19 | 13, 18 | syl5ibrcom 156 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → (𝑥 = (𝑢 ∩ 𝑌) → (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))) |
20 | 19 | rexlimdva 2583 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌) → (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))) |
21 | 2 | mopntop 13084 |
. . . . . . . . 9
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
22 | 21 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝐽 ∈ Top) |
23 | | ssel2 3137 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑌) |
24 | | ssel2 3137 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
25 | | rpxr 9597 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
26 | 2 | blopn 13130 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐶)𝑟) ∈ 𝐽) |
27 | | eleq1a 2238 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦(ball‘𝐶)𝑟) ∈ 𝐽 → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
28 | 26, 27 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
29 | 28 | 3expa 1193 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
30 | 25, 29 | sylan2 284 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
31 | 30 | rexlimdva 2583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
32 | 24, 31 | sylan2 284 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
33 | 32 | anassrs 398 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑦 ∈ 𝑌) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
34 | 23, 33 | sylan2 284 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
35 | 34 | anassrs 398 |
. . . . . . . . . . . 12
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) ∧ 𝑦 ∈ 𝑥) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
36 | 35 | rexlimdva 2583 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) → (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
37 | 36 | adantrd 277 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) → ((∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥) → 𝑧 ∈ 𝐽)) |
38 | 37 | adantrr 471 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ((∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥) → 𝑧 ∈ 𝐽)) |
39 | 38 | abssdv 3216 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ⊆ 𝐽) |
40 | | uniopn 12639 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ⊆ 𝐽) → ∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∈ 𝐽) |
41 | 22, 39, 40 | syl2anc 409 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∈ 𝐽) |
42 | | oveq1 5849 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑢 → (𝑦(ball‘𝐶)𝑟) = (𝑢(ball‘𝐶)𝑟)) |
43 | 42 | ineq1d 3322 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) = ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌)) |
44 | 43 | sseq1d 3171 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑢 → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
45 | 44 | rexbidv 2467 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
46 | 45 | rspccv 2827 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (𝑢 ∈ 𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
47 | 46 | ad2antll 483 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
48 | | ssel 3136 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ⊆ 𝑌 → (𝑢 ∈ 𝑥 → 𝑢 ∈ 𝑌)) |
49 | | ssel 3136 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 ⊆ 𝑋 → (𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑋)) |
50 | | blcntr 13056 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)) |
51 | 50 | a1d 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) |
52 | 51 | ancld 323 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
53 | 52 | 3expa 1193 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
54 | 53 | reximdva 2568 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
55 | 54 | ex 114 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ∈ (∞Met‘𝑋) → (𝑢 ∈ 𝑋 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))) |
56 | 49, 55 | sylan9r 408 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑢 ∈ 𝑌 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))) |
57 | 48, 56 | sylan9r 408 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) → (𝑢 ∈ 𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))) |
58 | 57 | adantrr 471 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))) |
59 | 47, 58 | mpdd 41 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
60 | 42 | eleq2d 2236 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑢 → (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ↔ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) |
61 | 44, 60 | anbi12d 465 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑢 → ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
62 | 61 | rexbidv 2467 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
63 | 62 | rspcev 2830 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑥 ∧ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) → ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
64 | 63 | ex 114 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝑥 → (∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)) → ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
65 | 59, 64 | sylcom 28 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
66 | | simprl 521 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥 ⊆ 𝑌) |
67 | 66 | sseld 3141 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → 𝑢 ∈ 𝑌)) |
68 | 65, 67 | jcad 305 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌))) |
69 | | elin 3305 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ↔ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢 ∈ 𝑌)) |
70 | | ssel2 3137 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) → 𝑢 ∈ 𝑥) |
71 | 69, 70 | sylan2br 286 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢 ∈ 𝑌)) → 𝑢 ∈ 𝑥) |
72 | 71 | expr 373 |
. . . . . . . . . . . . 13
⊢ ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥)) |
73 | 72 | rexlimivw 2579 |
. . . . . . . . . . . 12
⊢
(∃𝑟 ∈
ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥)) |
74 | 73 | rexlimivw 2579 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥)) |
75 | 74 | imp 123 |
. . . . . . . . . 10
⊢
((∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌) → 𝑢 ∈ 𝑥) |
76 | 68, 75 | impbid1 141 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 ↔ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌))) |
77 | | elin 3305 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ (∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌) ↔ (𝑢 ∈ ∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∧ 𝑢 ∈ 𝑌)) |
78 | | eluniab 3801 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ↔ ∃𝑧(𝑢 ∈ 𝑧 ∧ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥))) |
79 | | ancom 264 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ 𝑧 ∧ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)) ↔ ((∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥) ∧ 𝑢 ∈ 𝑧)) |
80 | | anass 399 |
. . . . . . . . . . . . . . . 16
⊢
(((∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥) ∧ 𝑢 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
81 | | r19.41v 2622 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑟 ∈
ℝ+ (𝑧 =
(𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
82 | 81 | rexbii 2473 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑦 ∈ 𝑥 (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
83 | | r19.41v 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑦 ∈
𝑥 (∃𝑟 ∈ ℝ+
𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
84 | 82, 83 | bitr2i 184 |
. . . . . . . . . . . . . . . 16
⊢
((∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
85 | 79, 80, 84 | 3bitri 205 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ 𝑧 ∧ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)) ↔ ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
86 | 85 | exbii 1593 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧(𝑢 ∈ 𝑧 ∧ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)) ↔ ∃𝑧∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
87 | 78, 86 | bitri 183 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ ∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ↔ ∃𝑧∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
88 | | vex 2729 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑦 ∈ V |
89 | | blex 13027 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐶 ∈ (∞Met‘𝑋) → (ball‘𝐶) ∈ V) |
90 | | vex 2729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑟 ∈ V |
91 | 90 | a1i 9 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝑟 ∈ V) |
92 | | ovexg 5876 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ V ∧
(ball‘𝐶) ∈ V
∧ 𝑟 ∈ V) →
(𝑦(ball‘𝐶)𝑟) ∈ V) |
93 | 88, 89, 91, 92 | mp3an2ani 1334 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑦(ball‘𝐶)𝑟) ∈ V) |
94 | | ineq1 3316 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑧 ∩ 𝑌) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) |
95 | 94 | sseq1d 3171 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑦(ball‘𝐶)𝑟) → ((𝑧 ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
96 | | eleq2 2230 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑢 ∈ 𝑧 ↔ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
97 | 95, 96 | anbi12d 465 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑦(ball‘𝐶)𝑟) → (((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
98 | 97 | ceqsexgv 2855 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦(ball‘𝐶)𝑟) ∈ V → (∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
99 | 93, 98 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
100 | 99 | rexbidv 2467 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑟 ∈ ℝ+ ∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
101 | | rexcom4 2749 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑟 ∈
ℝ+ ∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑧∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
102 | 100, 101 | bitr3di 194 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑧∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)))) |
103 | 102 | rexbidv 2467 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑦 ∈ 𝑥 ∃𝑧∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)))) |
104 | | rexcom4 2749 |
. . . . . . . . . . . . . 14
⊢
(∃𝑦 ∈
𝑥 ∃𝑧∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑧∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
105 | 103, 104 | bitr2di 196 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑧∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
106 | 87, 105 | syl5bb 191 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑢 ∈ ∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ↔ ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
107 | 106 | anbi1d 461 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝑢 ∈ ∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∧ 𝑢 ∈ 𝑌) ↔ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌))) |
108 | 77, 107 | bitr2id 192 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌) ↔ 𝑢 ∈ (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌))) |
109 | 108 | adantr 274 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ((∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌) ↔ 𝑢 ∈ (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌))) |
110 | 76, 109 | bitrd 187 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 ↔ 𝑢 ∈ (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌))) |
111 | 110 | eqrdv 2163 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥 = (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌)) |
112 | | ineq1 3316 |
. . . . . . . 8
⊢ (𝑢 = ∪
{𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} → (𝑢 ∩ 𝑌) = (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌)) |
113 | 112 | rspceeqv 2848 |
. . . . . . 7
⊢ ((∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∈ 𝐽 ∧ 𝑥 = (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌)) → ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌)) |
114 | 41, 111, 113 | syl2anc 409 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌)) |
115 | 114 | ex 114 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) → ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌))) |
116 | 20, 115 | impbid 128 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌) ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))) |
117 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) |
118 | 24, 117 | elind 3307 |
. . . . . . . . . 10
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ (𝑋 ∩ 𝑌)) |
119 | | metrest.1 |
. . . . . . . . . . . . . . 15
⊢ 𝐷 = (𝐶 ↾ (𝑌 × 𝑌)) |
120 | 119 | blres 13074 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) |
121 | 120 | sseq1d 3171 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
122 | 121 | 3expa 1193 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌)) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
123 | 25, 122 | sylan2 284 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌)) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
124 | 123 | rexbidva 2463 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
125 | 118, 124 | sylan2 284 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
126 | 125 | anassrs 398 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑦 ∈ 𝑌) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
127 | 23, 126 | sylan2 284 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
128 | 127 | anassrs 398 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) ∧ 𝑦 ∈ 𝑥) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
129 | 128 | ralbidva 2462 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) → (∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
130 | 129 | pm5.32da 448 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))) |
131 | 116, 130 | bitr4d 190 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌) ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))) |
132 | 21 | adantr 274 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝐽 ∈ Top) |
133 | | id 19 |
. . . . 5
⊢ (𝑌 ⊆ 𝑋 → 𝑌 ⊆ 𝑋) |
134 | 2 | mopnm 13088 |
. . . . 5
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝑋 ∈ 𝐽) |
135 | | ssexg 4121 |
. . . . 5
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝑌 ∈ V) |
136 | 133, 134,
135 | syl2anr 288 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ V) |
137 | | elrest 12563 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌))) |
138 | 132, 136,
137 | syl2anc 409 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌))) |
139 | | xmetres2 13019 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐶 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
140 | 119, 139 | eqeltrid 2253 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝐷 ∈ (∞Met‘𝑌)) |
141 | | metrest.4 |
. . . . 5
⊢ 𝐾 = (MetOpen‘𝐷) |
142 | 141 | elmopn2 13089 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑌) → (𝑥 ∈ 𝐾 ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))) |
143 | 140, 142 | syl 14 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∈ 𝐾 ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))) |
144 | 131, 138,
143 | 3bitr4d 219 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∈ (𝐽 ↾t 𝑌) ↔ 𝑥 ∈ 𝐾)) |
145 | 144 | eqrdv 2163 |
1
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = 𝐾) |