| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp3a | GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3a | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpa 296 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3impa 1197 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: nnawordex 6628 div2subap 8930 nn0addge1 9361 nn0addge2 9362 nn0sub2 9466 eluzp1p1 9694 uznn0sub 9700 iocssre 10095 icossre 10096 iccssre 10097 lincmb01cmp 10145 iccf1o 10146 fzosplitprm1 10385 subfzo0 10393 modfzo0difsn 10562 pfxpfx 11184 efltim 12084 fldivndvdslt 12323 prmdiv 12632 hashgcdlem 12635 vfermltl 12649 coprimeprodsq 12655 pythagtrip 12681 difsqpwdvds 12736 tgtop11 14623 sinq12gt0 15377 gausslemma2dlem1a 15610 |
| Copyright terms: Public domain | W3C validator |