![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimp3a | GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3a | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | biimpa 296 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
3 | 2 | 3impa 1196 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: nnawordex 6582 div2subap 8856 nn0addge1 9286 nn0addge2 9287 nn0sub2 9390 eluzp1p1 9618 uznn0sub 9624 iocssre 10019 icossre 10020 iccssre 10021 lincmb01cmp 10069 iccf1o 10070 fzosplitprm1 10301 subfzo0 10309 modfzo0difsn 10466 efltim 11841 fldivndvdslt 12076 prmdiv 12373 hashgcdlem 12376 vfermltl 12389 coprimeprodsq 12395 pythagtrip 12421 difsqpwdvds 12476 tgtop11 14244 sinq12gt0 14965 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |