![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimp3a | GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3a | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | biimpa 296 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
3 | 2 | 3impa 1196 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: nnawordex 6584 div2subap 8858 nn0addge1 9289 nn0addge2 9290 nn0sub2 9393 eluzp1p1 9621 uznn0sub 9627 iocssre 10022 icossre 10023 iccssre 10024 lincmb01cmp 10072 iccf1o 10073 fzosplitprm1 10304 subfzo0 10312 modfzo0difsn 10469 efltim 11844 fldivndvdslt 12079 prmdiv 12376 hashgcdlem 12379 vfermltl 12392 coprimeprodsq 12398 pythagtrip 12424 difsqpwdvds 12479 tgtop11 14255 sinq12gt0 15006 gausslemma2dlem1a 15215 |
Copyright terms: Public domain | W3C validator |