ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimp3a GIF version

Theorem biimp3a 1345
Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.)
Hypothesis
Ref Expression
biimp3a.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
biimp3a ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem biimp3a
StepHypRef Expression
1 biimp3a.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21biimpa 296 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
323impa 1194 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  nnawordex  6529  div2subap  8793  nn0addge1  9221  nn0addge2  9222  nn0sub2  9325  eluzp1p1  9552  uznn0sub  9558  iocssre  9952  icossre  9953  iccssre  9954  lincmb01cmp  10002  iccf1o  10003  fzosplitprm1  10233  subfzo0  10241  modfzo0difsn  10394  efltim  11705  fldivndvdslt  11939  prmdiv  12234  hashgcdlem  12237  vfermltl  12250  coprimeprodsq  12256  pythagtrip  12282  difsqpwdvds  12336  tgtop11  13546  sinq12gt0  14221
  Copyright terms: Public domain W3C validator