![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimp3a | GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpa 290. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3a | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | biimpa 290 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
3 | 2 | 3impa 1138 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 924 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 926 |
This theorem is referenced by: nnawordex 6285 div2subap 8300 nn0addge1 8717 nn0addge2 8718 nn0sub2 8818 eluzp1p1 9042 uznn0sub 9048 iocssre 9369 icossre 9370 iccssre 9371 lincmb01cmp 9418 iccf1o 9419 fzosplitprm1 9641 subfzo0 9649 modfzo0difsn 9798 efltim 10984 fldivndvdslt 11209 hashgcdlem 11477 |
Copyright terms: Public domain | W3C validator |