| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp3a | GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3a | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpa 296 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3impa 1196 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: nnawordex 6605 div2subap 8892 nn0addge1 9323 nn0addge2 9324 nn0sub2 9428 eluzp1p1 9656 uznn0sub 9662 iocssre 10057 icossre 10058 iccssre 10059 lincmb01cmp 10107 iccf1o 10108 fzosplitprm1 10344 subfzo0 10352 modfzo0difsn 10521 efltim 11928 fldivndvdslt 12167 prmdiv 12476 hashgcdlem 12479 vfermltl 12493 coprimeprodsq 12499 pythagtrip 12525 difsqpwdvds 12580 tgtop11 14466 sinq12gt0 15220 gausslemma2dlem1a 15453 |
| Copyright terms: Public domain | W3C validator |