| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp3a | GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3a | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpa 296 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3impa 1218 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: nnawordex 6673 div2subap 8980 nn0addge1 9411 nn0addge2 9412 nn0sub2 9516 eluzp1p1 9744 uznn0sub 9750 iocssre 10145 icossre 10146 iccssre 10147 lincmb01cmp 10195 iccf1o 10196 fzosplitprm1 10435 subfzo0 10443 modfzo0difsn 10612 pfxpfx 11235 efltim 12204 fldivndvdslt 12443 prmdiv 12752 hashgcdlem 12755 vfermltl 12769 coprimeprodsq 12775 pythagtrip 12801 difsqpwdvds 12856 tgtop11 14744 sinq12gt0 15498 gausslemma2dlem1a 15731 |
| Copyright terms: Public domain | W3C validator |