| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp3a | GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3a | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpa 296 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3impa 1196 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: nnawordex 6614 div2subap 8909 nn0addge1 9340 nn0addge2 9341 nn0sub2 9445 eluzp1p1 9673 uznn0sub 9679 iocssre 10074 icossre 10075 iccssre 10076 lincmb01cmp 10124 iccf1o 10125 fzosplitprm1 10361 subfzo0 10369 modfzo0difsn 10538 efltim 11951 fldivndvdslt 12190 prmdiv 12499 hashgcdlem 12502 vfermltl 12516 coprimeprodsq 12522 pythagtrip 12548 difsqpwdvds 12603 tgtop11 14490 sinq12gt0 15244 gausslemma2dlem1a 15477 |
| Copyright terms: Public domain | W3C validator |