Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimp3a | GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpa 294. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3a | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | biimpa 294 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
3 | 2 | 3impa 1184 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: nnawordex 6492 div2subap 8729 nn0addge1 9156 nn0addge2 9157 nn0sub2 9260 eluzp1p1 9487 uznn0sub 9493 iocssre 9885 icossre 9886 iccssre 9887 lincmb01cmp 9935 iccf1o 9936 fzosplitprm1 10165 subfzo0 10173 modfzo0difsn 10326 efltim 11635 fldivndvdslt 11868 prmdiv 12163 hashgcdlem 12166 vfermltl 12179 coprimeprodsq 12185 pythagtrip 12211 difsqpwdvds 12265 tgtop11 12676 sinq12gt0 13351 |
Copyright terms: Public domain | W3C validator |