ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimp3a GIF version

Theorem biimp3a 1357
Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.)
Hypothesis
Ref Expression
biimp3a.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
biimp3a ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem biimp3a
StepHypRef Expression
1 biimp3a.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21biimpa 296 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
323impa 1196 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  nnawordex  6605  div2subap  8892  nn0addge1  9323  nn0addge2  9324  nn0sub2  9428  eluzp1p1  9656  uznn0sub  9662  iocssre  10057  icossre  10058  iccssre  10059  lincmb01cmp  10107  iccf1o  10108  fzosplitprm1  10344  subfzo0  10352  modfzo0difsn  10521  efltim  11928  fldivndvdslt  12167  prmdiv  12476  hashgcdlem  12479  vfermltl  12493  coprimeprodsq  12499  pythagtrip  12525  difsqpwdvds  12580  tgtop11  14466  sinq12gt0  15220  gausslemma2dlem1a  15453
  Copyright terms: Public domain W3C validator