| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp3a | GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3a | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpa 296 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3impa 1196 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: nnawordex 6596 div2subap 8881 nn0addge1 9312 nn0addge2 9313 nn0sub2 9416 eluzp1p1 9644 uznn0sub 9650 iocssre 10045 icossre 10046 iccssre 10047 lincmb01cmp 10095 iccf1o 10096 fzosplitprm1 10327 subfzo0 10335 modfzo0difsn 10504 efltim 11880 fldivndvdslt 12119 prmdiv 12428 hashgcdlem 12431 vfermltl 12445 coprimeprodsq 12451 pythagtrip 12477 difsqpwdvds 12532 tgtop11 14396 sinq12gt0 15150 gausslemma2dlem1a 15383 |
| Copyright terms: Public domain | W3C validator |