| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp3a | GIF version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| biimp3a | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpa 296 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3impa 1196 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: nnawordex 6596 div2subap 8883 nn0addge1 9314 nn0addge2 9315 nn0sub2 9418 eluzp1p1 9646 uznn0sub 9652 iocssre 10047 icossre 10048 iccssre 10049 lincmb01cmp 10097 iccf1o 10098 fzosplitprm1 10329 subfzo0 10337 modfzo0difsn 10506 efltim 11882 fldivndvdslt 12121 prmdiv 12430 hashgcdlem 12433 vfermltl 12447 coprimeprodsq 12453 pythagtrip 12479 difsqpwdvds 12534 tgtop11 14420 sinq12gt0 15174 gausslemma2dlem1a 15407 |
| Copyright terms: Public domain | W3C validator |