ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimp3a GIF version

Theorem biimp3a 1324
Description: Infer implication from a logical equivalence. Similar to biimpa 294. (Contributed by NM, 4-Sep-2005.)
Hypothesis
Ref Expression
biimp3a.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
biimp3a ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem biimp3a
StepHypRef Expression
1 biimp3a.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21biimpa 294 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
323impa 1177 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 965
This theorem is referenced by:  nnawordex  6464  div2subap  8688  nn0addge1  9115  nn0addge2  9116  nn0sub2  9216  eluzp1p1  9443  uznn0sub  9449  iocssre  9835  icossre  9836  iccssre  9837  lincmb01cmp  9885  iccf1o  9886  fzosplitprm1  10111  subfzo0  10119  modfzo0difsn  10272  efltim  11572  fldivndvdslt  11799  hashgcdlem  12070  tgtop11  12415  sinq12gt0  13090
  Copyright terms: Public domain W3C validator