Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimp3a | GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpa 294. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3a | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | biimpa 294 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
3 | 2 | 3impa 1177 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: nnawordex 6464 div2subap 8688 nn0addge1 9115 nn0addge2 9116 nn0sub2 9216 eluzp1p1 9443 uznn0sub 9449 iocssre 9835 icossre 9836 iccssre 9837 lincmb01cmp 9885 iccf1o 9886 fzosplitprm1 10111 subfzo0 10119 modfzo0difsn 10272 efltim 11572 fldivndvdslt 11799 hashgcdlem 12070 tgtop11 12415 sinq12gt0 13090 |
Copyright terms: Public domain | W3C validator |