ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffng GIF version

Theorem plusffng 13364
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
plusffn.1 𝐵 = (Base‘𝐺)
plusffn.2 = (+𝑓𝐺)
Assertion
Ref Expression
plusffng (𝐺𝑉 Fn (𝐵 × 𝐵))

Proof of Theorem plusffng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2782 . . . . 5 𝑥 ∈ V
2 plusgslid 13111 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
32slotex 13025 . . . . 5 (𝐺𝑉 → (+g𝐺) ∈ V)
4 vex 2782 . . . . . 6 𝑦 ∈ V
54a1i 9 . . . . 5 ((𝐺𝑉 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ V)
6 ovexg 6008 . . . . 5 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
71, 3, 5, 6mp3an2ani 1359 . . . 4 ((𝐺𝑉 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ V)
87ralrimivva 2592 . . 3 (𝐺𝑉 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ V)
9 eqid 2209 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦))
109fnmpo 6318 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵))
118, 10syl 14 . 2 (𝐺𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵))
12 plusffn.1 . . . 4 𝐵 = (Base‘𝐺)
13 eqid 2209 . . . 4 (+g𝐺) = (+g𝐺)
14 plusffn.2 . . . 4 = (+𝑓𝐺)
1512, 13, 14plusffvalg 13361 . . 3 (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)))
1615fneq1d 5387 . 2 (𝐺𝑉 → ( Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵)))
1711, 16mpbird 167 1 (𝐺𝑉 Fn (𝐵 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wral 2488  Vcvv 2779   × cxp 4694   Fn wfn 5289  cfv 5294  (class class class)co 5974  cmpo 5976  Basecbs 12998  +gcplusg 13076  +𝑓cplusf 13352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-inn 9079  df-2 9137  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-plusf 13354
This theorem is referenced by:  lmodfopnelem1  14253
  Copyright terms: Public domain W3C validator