ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffng GIF version

Theorem plusffng 12596
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
plusffn.1 𝐵 = (Base‘𝐺)
plusffn.2 = (+𝑓𝐺)
Assertion
Ref Expression
plusffng (𝐺𝑉 Fn (𝐵 × 𝐵))

Proof of Theorem plusffng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . . 5 𝑥 ∈ V
2 plusgslid 12490 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
32slotex 12421 . . . . 5 (𝐺𝑉 → (+g𝐺) ∈ V)
4 vex 2729 . . . . . 6 𝑦 ∈ V
54a1i 9 . . . . 5 ((𝐺𝑉 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ V)
6 ovexg 5876 . . . . 5 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
71, 3, 5, 6mp3an2ani 1334 . . . 4 ((𝐺𝑉 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ V)
87ralrimivva 2548 . . 3 (𝐺𝑉 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ V)
9 eqid 2165 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦))
109fnmpo 6170 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵))
118, 10syl 14 . 2 (𝐺𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵))
12 plusffn.1 . . . 4 𝐵 = (Base‘𝐺)
13 eqid 2165 . . . 4 (+g𝐺) = (+g𝐺)
14 plusffn.2 . . . 4 = (+𝑓𝐺)
1512, 13, 14plusffvalg 12593 . . 3 (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)))
1615fneq1d 5278 . 2 (𝐺𝑉 → ( Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵)))
1711, 16mpbird 166 1 (𝐺𝑉 Fn (𝐵 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726   × cxp 4602   Fn wfn 5183  cfv 5188  (class class class)co 5842  cmpo 5844  Basecbs 12394  +gcplusg 12457  +𝑓cplusf 12584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-inn 8858  df-2 8916  df-ndx 12397  df-slot 12398  df-base 12400  df-plusg 12470  df-plusf 12586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator