ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffng GIF version

Theorem plusffng 12619
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
plusffn.1 𝐵 = (Base‘𝐺)
plusffn.2 = (+𝑓𝐺)
Assertion
Ref Expression
plusffng (𝐺𝑉 Fn (𝐵 × 𝐵))

Proof of Theorem plusffng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . 5 𝑥 ∈ V
2 plusgslid 12513 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
32slotex 12443 . . . . 5 (𝐺𝑉 → (+g𝐺) ∈ V)
4 vex 2733 . . . . . 6 𝑦 ∈ V
54a1i 9 . . . . 5 ((𝐺𝑉 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ V)
6 ovexg 5887 . . . . 5 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
71, 3, 5, 6mp3an2ani 1339 . . . 4 ((𝐺𝑉 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ V)
87ralrimivva 2552 . . 3 (𝐺𝑉 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ V)
9 eqid 2170 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦))
109fnmpo 6181 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵))
118, 10syl 14 . 2 (𝐺𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵))
12 plusffn.1 . . . 4 𝐵 = (Base‘𝐺)
13 eqid 2170 . . . 4 (+g𝐺) = (+g𝐺)
14 plusffn.2 . . . 4 = (+𝑓𝐺)
1512, 13, 14plusffvalg 12616 . . 3 (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)))
1615fneq1d 5288 . 2 (𝐺𝑉 → ( Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵)))
1711, 16mpbird 166 1 (𝐺𝑉 Fn (𝐵 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730   × cxp 4609   Fn wfn 5193  cfv 5198  (class class class)co 5853  cmpo 5855  Basecbs 12416  +gcplusg 12480  +𝑓cplusf 12607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-plusf 12609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator