ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffng GIF version

Theorem plusffng 12807
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
plusffn.1 𝐵 = (Base‘𝐺)
plusffn.2 = (+𝑓𝐺)
Assertion
Ref Expression
plusffng (𝐺𝑉 Fn (𝐵 × 𝐵))

Proof of Theorem plusffng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2755 . . . . 5 𝑥 ∈ V
2 plusgslid 12590 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
32slotex 12507 . . . . 5 (𝐺𝑉 → (+g𝐺) ∈ V)
4 vex 2755 . . . . . 6 𝑦 ∈ V
54a1i 9 . . . . 5 ((𝐺𝑉 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ V)
6 ovexg 5925 . . . . 5 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
71, 3, 5, 6mp3an2ani 1355 . . . 4 ((𝐺𝑉 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ V)
87ralrimivva 2572 . . 3 (𝐺𝑉 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ V)
9 eqid 2189 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦))
109fnmpo 6221 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵))
118, 10syl 14 . 2 (𝐺𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵))
12 plusffn.1 . . . 4 𝐵 = (Base‘𝐺)
13 eqid 2189 . . . 4 (+g𝐺) = (+g𝐺)
14 plusffn.2 . . . 4 = (+𝑓𝐺)
1512, 13, 14plusffvalg 12804 . . 3 (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)))
1615fneq1d 5321 . 2 (𝐺𝑉 → ( Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵)))
1711, 16mpbird 167 1 (𝐺𝑉 Fn (𝐵 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  wral 2468  Vcvv 2752   × cxp 4639   Fn wfn 5226  cfv 5231  (class class class)co 5891  cmpo 5893  Basecbs 12480  +gcplusg 12555  +𝑓cplusf 12795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-cnex 7920  ax-resscn 7921  ax-1re 7923  ax-addrcl 7926
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-inn 8938  df-2 8996  df-ndx 12483  df-slot 12484  df-base 12486  df-plusg 12568  df-plusf 12797
This theorem is referenced by:  lmodfopnelem1  13601
  Copyright terms: Public domain W3C validator