| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plusffng | GIF version | ||
| Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| Ref | Expression |
|---|---|
| plusffn.1 | ⊢ 𝐵 = (Base‘𝐺) |
| plusffn.2 | ⊢ ⨣ = (+𝑓‘𝐺) |
| Ref | Expression |
|---|---|
| plusffng | ⊢ (𝐺 ∈ 𝑉 → ⨣ Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | plusgslid 13153 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 13067 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (+g‘𝐺) ∈ V) |
| 4 | vex 2802 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 4 | a1i 9 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ V) |
| 6 | ovexg 6041 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ (+g‘𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g‘𝐺)𝑦) ∈ V) | |
| 7 | 1, 3, 5, 6 | mp3an2ani 1378 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ V) |
| 8 | 7 | ralrimivva 2612 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ V) |
| 9 | eqid 2229 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦)) | |
| 10 | 9 | fnmpo 6354 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦)) Fn (𝐵 × 𝐵)) |
| 11 | 8, 10 | syl 14 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦)) Fn (𝐵 × 𝐵)) |
| 12 | plusffn.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 13 | eqid 2229 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 14 | plusffn.2 | . . . 4 ⊢ ⨣ = (+𝑓‘𝐺) | |
| 15 | 12, 13, 14 | plusffvalg 13403 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 16 | 15 | fneq1d 5411 | . 2 ⊢ (𝐺 ∈ 𝑉 → ( ⨣ Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦)) Fn (𝐵 × 𝐵))) |
| 17 | 11, 16 | mpbird 167 | 1 ⊢ (𝐺 ∈ 𝑉 → ⨣ Fn (𝐵 × 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 × cxp 4717 Fn wfn 5313 ‘cfv 5318 (class class class)co 6007 ∈ cmpo 6009 Basecbs 13040 +gcplusg 13118 +𝑓cplusf 13394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-plusf 13396 |
| This theorem is referenced by: lmodfopnelem1 14296 |
| Copyright terms: Public domain | W3C validator |