Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > plusffng | GIF version |
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.) |
Ref | Expression |
---|---|
plusffn.1 | ⊢ 𝐵 = (Base‘𝐺) |
plusffn.2 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
plusffng | ⊢ (𝐺 ∈ 𝑉 → ⨣ Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | plusgslid 12524 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
3 | 2 | slotex 12454 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (+g‘𝐺) ∈ V) |
4 | vex 2738 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 4 | a1i 9 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ V) |
6 | ovexg 5899 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ (+g‘𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g‘𝐺)𝑦) ∈ V) | |
7 | 1, 3, 5, 6 | mp3an2ani 1344 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ V) |
8 | 7 | ralrimivva 2557 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ V) |
9 | eqid 2175 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦)) | |
10 | 9 | fnmpo 6193 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦)) Fn (𝐵 × 𝐵)) |
11 | 8, 10 | syl 14 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦)) Fn (𝐵 × 𝐵)) |
12 | plusffn.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
13 | eqid 2175 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
14 | plusffn.2 | . . . 4 ⊢ ⨣ = (+𝑓‘𝐺) | |
15 | 12, 13, 14 | plusffvalg 12645 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦))) |
16 | 15 | fneq1d 5298 | . 2 ⊢ (𝐺 ∈ 𝑉 → ( ⨣ Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦)) Fn (𝐵 × 𝐵))) |
17 | 11, 16 | mpbird 167 | 1 ⊢ (𝐺 ∈ 𝑉 → ⨣ Fn (𝐵 × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ∀wral 2453 Vcvv 2735 × cxp 4618 Fn wfn 5203 ‘cfv 5208 (class class class)co 5865 ∈ cmpo 5867 Basecbs 12427 +gcplusg 12491 +𝑓cplusf 12636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-plusf 12638 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |