ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffng GIF version

Theorem plusffng 12648
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
plusffn.1 𝐵 = (Base‘𝐺)
plusffn.2 = (+𝑓𝐺)
Assertion
Ref Expression
plusffng (𝐺𝑉 Fn (𝐵 × 𝐵))

Proof of Theorem plusffng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2738 . . . . 5 𝑥 ∈ V
2 plusgslid 12524 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
32slotex 12454 . . . . 5 (𝐺𝑉 → (+g𝐺) ∈ V)
4 vex 2738 . . . . . 6 𝑦 ∈ V
54a1i 9 . . . . 5 ((𝐺𝑉 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ V)
6 ovexg 5899 . . . . 5 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
71, 3, 5, 6mp3an2ani 1344 . . . 4 ((𝐺𝑉 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ V)
87ralrimivva 2557 . . 3 (𝐺𝑉 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ V)
9 eqid 2175 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦))
109fnmpo 6193 . . 3 (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵))
118, 10syl 14 . 2 (𝐺𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵))
12 plusffn.1 . . . 4 𝐵 = (Base‘𝐺)
13 eqid 2175 . . . 4 (+g𝐺) = (+g𝐺)
14 plusffn.2 . . . 4 = (+𝑓𝐺)
1512, 13, 14plusffvalg 12645 . . 3 (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)))
1615fneq1d 5298 . 2 (𝐺𝑉 → ( Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦)) Fn (𝐵 × 𝐵)))
1711, 16mpbird 167 1 (𝐺𝑉 Fn (𝐵 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  wral 2453  Vcvv 2735   × cxp 4618   Fn wfn 5203  cfv 5208  (class class class)co 5865  cmpo 5867  Basecbs 12427  +gcplusg 12491  +𝑓cplusf 12636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-inn 8891  df-2 8949  df-ndx 12430  df-slot 12431  df-base 12433  df-plusg 12504  df-plusf 12638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator