Proof of Theorem tfr1onlemubacc
| Step | Hyp | Ref
| Expression |
| 1 | | tfr1on.f |
. . . . . . . . 9
⊢ 𝐹 = recs(𝐺) |
| 2 | | tfr1on.g |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐺) |
| 3 | | tfr1on.x |
. . . . . . . . 9
⊢ (𝜑 → Ord 𝑋) |
| 4 | | tfr1on.ex |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
| 5 | | tfr1onlemsucfn.1 |
. . . . . . . . 9
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| 6 | | tfr1onlembacc.3 |
. . . . . . . . 9
⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} |
| 7 | | tfr1onlembacc.u |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
| 8 | | tfr1onlembacc.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝑋) |
| 9 | | tfr1onlembacc.5 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlembfn 6411 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝐵 Fn
𝐷) |
| 11 | | fndm 5358 |
. . . . . . . 8
⊢ (∪ 𝐵 Fn
𝐷 → dom ∪ 𝐵 =
𝐷) |
| 12 | 10, 11 | syl 14 |
. . . . . . 7
⊢ (𝜑 → dom ∪ 𝐵 =
𝐷) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlembacc 6409 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 14 | 13 | unissd 3864 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝐵
⊆ ∪ 𝐴) |
| 15 | 5, 3 | tfr1onlemssrecs 6406 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝐴
⊆ recs(𝐺)) |
| 16 | 14, 15 | sstrd 3194 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝐵
⊆ recs(𝐺)) |
| 17 | | dmss 4866 |
. . . . . . . 8
⊢ (∪ 𝐵
⊆ recs(𝐺) → dom
∪ 𝐵 ⊆ dom recs(𝐺)) |
| 18 | 16, 17 | syl 14 |
. . . . . . 7
⊢ (𝜑 → dom ∪ 𝐵
⊆ dom recs(𝐺)) |
| 19 | 12, 18 | eqsstrrd 3221 |
. . . . . 6
⊢ (𝜑 → 𝐷 ⊆ dom recs(𝐺)) |
| 20 | 19 | sselda 3184 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → 𝑤 ∈ dom recs(𝐺)) |
| 21 | | eqid 2196 |
. . . . . 6
⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| 22 | 21 | tfrlem9 6386 |
. . . . 5
⊢ (𝑤 ∈ dom recs(𝐺) → (recs(𝐺)‘𝑤) = (𝐺‘(recs(𝐺) ↾ 𝑤))) |
| 23 | 20, 22 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → (recs(𝐺)‘𝑤) = (𝐺‘(recs(𝐺) ↾ 𝑤))) |
| 24 | | tfrfun 6387 |
. . . . 5
⊢ Fun
recs(𝐺) |
| 25 | 12 | eleq2d 2266 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ dom ∪
𝐵 ↔ 𝑤 ∈ 𝐷)) |
| 26 | 25 | biimpar 297 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → 𝑤 ∈ dom ∪
𝐵) |
| 27 | | funssfv 5587 |
. . . . 5
⊢ ((Fun
recs(𝐺) ∧ ∪ 𝐵
⊆ recs(𝐺) ∧ 𝑤 ∈ dom ∪ 𝐵)
→ (recs(𝐺)‘𝑤) = (∪ 𝐵‘𝑤)) |
| 28 | 24, 16, 26, 27 | mp3an2ani 1355 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → (recs(𝐺)‘𝑤) = (∪ 𝐵‘𝑤)) |
| 29 | | ordelon 4419 |
. . . . . . . . . 10
⊢ ((Ord
𝑋 ∧ 𝐷 ∈ 𝑋) → 𝐷 ∈ On) |
| 30 | 3, 8, 29 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ On) |
| 31 | | eloni 4411 |
. . . . . . . . 9
⊢ (𝐷 ∈ On → Ord 𝐷) |
| 32 | 30, 31 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → Ord 𝐷) |
| 33 | | ordelss 4415 |
. . . . . . . 8
⊢ ((Ord
𝐷 ∧ 𝑤 ∈ 𝐷) → 𝑤 ⊆ 𝐷) |
| 34 | 32, 33 | sylan 283 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → 𝑤 ⊆ 𝐷) |
| 35 | 12 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → dom ∪
𝐵 = 𝐷) |
| 36 | 34, 35 | sseqtrrd 3223 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → 𝑤 ⊆ dom ∪
𝐵) |
| 37 | | fun2ssres 5302 |
. . . . . 6
⊢ ((Fun
recs(𝐺) ∧ ∪ 𝐵
⊆ recs(𝐺) ∧ 𝑤 ⊆ dom ∪ 𝐵)
→ (recs(𝐺) ↾
𝑤) = (∪ 𝐵
↾ 𝑤)) |
| 38 | 24, 16, 36, 37 | mp3an2ani 1355 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → (recs(𝐺) ↾ 𝑤) = (∪ 𝐵 ↾ 𝑤)) |
| 39 | 38 | fveq2d 5565 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → (𝐺‘(recs(𝐺) ↾ 𝑤)) = (𝐺‘(∪ 𝐵 ↾ 𝑤))) |
| 40 | 23, 28, 39 | 3eqtr3d 2237 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → (∪ 𝐵‘𝑤) = (𝐺‘(∪ 𝐵 ↾ 𝑤))) |
| 41 | 40 | ralrimiva 2570 |
. 2
⊢ (𝜑 → ∀𝑤 ∈ 𝐷 (∪ 𝐵‘𝑤) = (𝐺‘(∪ 𝐵 ↾ 𝑤))) |
| 42 | | fveq2 5561 |
. . . 4
⊢ (𝑢 = 𝑤 → (∪ 𝐵‘𝑢) = (∪ 𝐵‘𝑤)) |
| 43 | | reseq2 4942 |
. . . . 5
⊢ (𝑢 = 𝑤 → (∪ 𝐵 ↾ 𝑢) = (∪ 𝐵 ↾ 𝑤)) |
| 44 | 43 | fveq2d 5565 |
. . . 4
⊢ (𝑢 = 𝑤 → (𝐺‘(∪ 𝐵 ↾ 𝑢)) = (𝐺‘(∪ 𝐵 ↾ 𝑤))) |
| 45 | 42, 44 | eqeq12d 2211 |
. . 3
⊢ (𝑢 = 𝑤 → ((∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)) ↔ (∪ 𝐵‘𝑤) = (𝐺‘(∪ 𝐵 ↾ 𝑤)))) |
| 46 | 45 | cbvralv 2729 |
. 2
⊢
(∀𝑢 ∈
𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢)) ↔ ∀𝑤 ∈ 𝐷 (∪ 𝐵‘𝑤) = (𝐺‘(∪ 𝐵 ↾ 𝑤))) |
| 47 | 41, 46 | sylibr 134 |
1
⊢ (𝜑 → ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) |