| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mappsrprg | GIF version | ||
| Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) |
| Ref | Expression |
|---|---|
| mappsrprg | ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ R) → (𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 7749 | . . . . 5 ⊢ 1P ∈ P | |
| 2 | addclpr 7732 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 426 | . . . 4 ⊢ (1P +P 1P) ∈ P |
| 4 | ltaddpr 7792 | . . . 4 ⊢ (((1P +P 1P) ∈ P ∧ 𝐴 ∈ P) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴)) | |
| 5 | 3, 4 | mpan 424 | . . 3 ⊢ (𝐴 ∈ P → (1P +P 1P)<P ((1P +P 1P) +P 𝐴)) |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ R) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴)) |
| 7 | df-m1r 7928 | . . . . . 6 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
| 8 | 7 | breq1i 4090 | . . . . 5 ⊢ (-1R <R [〈𝐴, 1P〉] ~R ↔ [〈1P, (1P +P 1P)〉] ~R <R [〈𝐴, 1P〉] ~R ) |
| 9 | 1 | a1i 9 | . . . . . 6 ⊢ (𝐴 ∈ P → 1P ∈ P) |
| 10 | 3 | a1i 9 | . . . . . 6 ⊢ (𝐴 ∈ P → (1P +P 1P) ∈ P) |
| 11 | id 19 | . . . . . 6 ⊢ (𝐴 ∈ P → 𝐴 ∈ P) | |
| 12 | ltsrprg 7942 | . . . . . 6 ⊢ (((1P ∈ P ∧ (1P +P 1P) ∈ P) ∧ (𝐴 ∈ P ∧ 1P ∈ P)) → ([〈1P, (1P +P 1P)〉] ~R <R [〈𝐴, 1P〉] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴))) | |
| 13 | 9, 10, 11, 9, 12 | syl22anc 1272 | . . . . 5 ⊢ (𝐴 ∈ P → ([〈1P, (1P +P 1P)〉] ~R <R [〈𝐴, 1P〉] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴))) |
| 14 | 8, 13 | bitrid 192 | . . . 4 ⊢ (𝐴 ∈ P → (-1R <R [〈𝐴, 1P〉] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴))) |
| 15 | 14 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ R) → (-1R <R [〈𝐴, 1P〉] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴))) |
| 16 | m1r 7947 | . . . 4 ⊢ -1R ∈ R | |
| 17 | opelxpi 4751 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → 〈𝐴, 1P〉 ∈ (P × P)) | |
| 18 | enrex 7932 | . . . . . . . 8 ⊢ ~R ∈ V | |
| 19 | 18 | ecelqsi 6744 | . . . . . . 7 ⊢ (〈𝐴, 1P〉 ∈ (P × P) → [〈𝐴, 1P〉] ~R ∈ ((P × P) / ~R )) |
| 20 | 17, 19 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → [〈𝐴, 1P〉] ~R ∈ ((P × P) / ~R )) |
| 21 | 1, 20 | mpan2 425 | . . . . 5 ⊢ (𝐴 ∈ P → [〈𝐴, 1P〉] ~R ∈ ((P × P) / ~R )) |
| 22 | df-nr 7922 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
| 23 | 21, 22 | eleqtrrdi 2323 | . . . 4 ⊢ (𝐴 ∈ P → [〈𝐴, 1P〉] ~R ∈ R) |
| 24 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ R) → 𝐶 ∈ R) | |
| 25 | ltasrg 7965 | . . . 4 ⊢ ((-1R ∈ R ∧ [〈𝐴, 1P〉] ~R ∈ R ∧ 𝐶 ∈ R) → (-1R <R [〈𝐴, 1P〉] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ))) | |
| 26 | 16, 23, 24, 25 | mp3an2ani 1378 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ R) → (-1R <R [〈𝐴, 1P〉] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ))) |
| 27 | 15, 26 | bitr3d 190 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ R) → ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ))) |
| 28 | 6, 27 | mpbid 147 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐶 ∈ R) → (𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 〈cop 3669 class class class wbr 4083 × cxp 4717 (class class class)co 6007 [cec 6686 / cqs 6687 Pcnp 7486 1Pc1p 7487 +P cpp 7488 <P cltp 7490 ~R cer 7491 Rcnr 7492 -1Rcm1r 7495 +R cplr 7496 <R cltr 7498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-2o 6569 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-pli 7500 df-mi 7501 df-lti 7502 df-plpq 7539 df-mpq 7540 df-enq 7542 df-nqqs 7543 df-plqqs 7544 df-mqqs 7545 df-1nqqs 7546 df-rq 7547 df-ltnqqs 7548 df-enq0 7619 df-nq0 7620 df-0nq0 7621 df-plq0 7622 df-mq0 7623 df-inp 7661 df-i1p 7662 df-iplp 7663 df-iltp 7665 df-enr 7921 df-nr 7922 df-plr 7923 df-ltr 7925 df-m1r 7928 |
| This theorem is referenced by: map2psrprg 8000 suplocsrlemb 8001 suplocsrlem 8003 |
| Copyright terms: Public domain | W3C validator |