ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mappsrprg GIF version

Theorem mappsrprg 7755
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
mappsrprg ((𝐴P𝐶R) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ))

Proof of Theorem mappsrprg
StepHypRef Expression
1 1pr 7505 . . . . 5 1PP
2 addclpr 7488 . . . . 5 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
31, 1, 2mp2an 424 . . . 4 (1P +P 1P) ∈ P
4 ltaddpr 7548 . . . 4 (((1P +P 1P) ∈ P𝐴P) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
53, 4mpan 422 . . 3 (𝐴P → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
65adantr 274 . 2 ((𝐴P𝐶R) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
7 df-m1r 7684 . . . . . 6 -1R = [⟨1P, (1P +P 1P)⟩] ~R
87breq1i 3994 . . . . 5 (-1R <R [⟨𝐴, 1P⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R )
91a1i 9 . . . . . 6 (𝐴P → 1PP)
103a1i 9 . . . . . 6 (𝐴P → (1P +P 1P) ∈ P)
11 id 19 . . . . . 6 (𝐴P𝐴P)
12 ltsrprg 7698 . . . . . 6 (((1PP ∧ (1P +P 1P) ∈ P) ∧ (𝐴P ∧ 1PP)) → ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)))
139, 10, 11, 9, 12syl22anc 1234 . . . . 5 (𝐴P → ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)))
148, 13syl5bb 191 . . . 4 (𝐴P → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)))
1514adantr 274 . . 3 ((𝐴P𝐶R) → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)))
16 m1r 7703 . . . 4 -1RR
17 opelxpi 4641 . . . . . . 7 ((𝐴P ∧ 1PP) → ⟨𝐴, 1P⟩ ∈ (P × P))
18 enrex 7688 . . . . . . . 8 ~R ∈ V
1918ecelqsi 6564 . . . . . . 7 (⟨𝐴, 1P⟩ ∈ (P × P) → [⟨𝐴, 1P⟩] ~R ∈ ((P × P) / ~R ))
2017, 19syl 14 . . . . . 6 ((𝐴P ∧ 1PP) → [⟨𝐴, 1P⟩] ~R ∈ ((P × P) / ~R ))
211, 20mpan2 423 . . . . 5 (𝐴P → [⟨𝐴, 1P⟩] ~R ∈ ((P × P) / ~R ))
22 df-nr 7678 . . . . 5 R = ((P × P) / ~R )
2321, 22eleqtrrdi 2264 . . . 4 (𝐴P → [⟨𝐴, 1P⟩] ~RR)
24 simpr 109 . . . 4 ((𝐴P𝐶R) → 𝐶R)
25 ltasrg 7721 . . . 4 ((-1RR ∧ [⟨𝐴, 1P⟩] ~RR𝐶R) → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R )))
2616, 23, 24, 25mp3an2ani 1339 . . 3 ((𝐴P𝐶R) → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R )))
2715, 26bitr3d 189 . 2 ((𝐴P𝐶R) → ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R )))
286, 27mpbid 146 1 ((𝐴P𝐶R) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2141  cop 3584   class class class wbr 3987   × cxp 4607  (class class class)co 5851  [cec 6508   / cqs 6509  Pcnp 7242  1Pc1p 7243   +P cpp 7244  <P cltp 7246   ~R cer 7247  Rcnr 7248  -1Rcm1r 7251   +R cplr 7252   <R cltr 7254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-1o 6393  df-2o 6394  df-oadd 6397  df-omul 6398  df-er 6510  df-ec 6512  df-qs 6516  df-ni 7255  df-pli 7256  df-mi 7257  df-lti 7258  df-plpq 7295  df-mpq 7296  df-enq 7298  df-nqqs 7299  df-plqqs 7300  df-mqqs 7301  df-1nqqs 7302  df-rq 7303  df-ltnqqs 7304  df-enq0 7375  df-nq0 7376  df-0nq0 7377  df-plq0 7378  df-mq0 7379  df-inp 7417  df-i1p 7418  df-iplp 7419  df-iltp 7421  df-enr 7677  df-nr 7678  df-plr 7679  df-ltr 7681  df-m1r 7684
This theorem is referenced by:  map2psrprg  7756  suplocsrlemb  7757  suplocsrlem  7759
  Copyright terms: Public domain W3C validator