ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mappsrprg GIF version

Theorem mappsrprg 7924
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
mappsrprg ((𝐴P𝐶R) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ))

Proof of Theorem mappsrprg
StepHypRef Expression
1 1pr 7674 . . . . 5 1PP
2 addclpr 7657 . . . . 5 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
31, 1, 2mp2an 426 . . . 4 (1P +P 1P) ∈ P
4 ltaddpr 7717 . . . 4 (((1P +P 1P) ∈ P𝐴P) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
53, 4mpan 424 . . 3 (𝐴P → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
65adantr 276 . 2 ((𝐴P𝐶R) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
7 df-m1r 7853 . . . . . 6 -1R = [⟨1P, (1P +P 1P)⟩] ~R
87breq1i 4054 . . . . 5 (-1R <R [⟨𝐴, 1P⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R )
91a1i 9 . . . . . 6 (𝐴P → 1PP)
103a1i 9 . . . . . 6 (𝐴P → (1P +P 1P) ∈ P)
11 id 19 . . . . . 6 (𝐴P𝐴P)
12 ltsrprg 7867 . . . . . 6 (((1PP ∧ (1P +P 1P) ∈ P) ∧ (𝐴P ∧ 1PP)) → ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)))
139, 10, 11, 9, 12syl22anc 1251 . . . . 5 (𝐴P → ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)))
148, 13bitrid 192 . . . 4 (𝐴P → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)))
1514adantr 276 . . 3 ((𝐴P𝐶R) → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)))
16 m1r 7872 . . . 4 -1RR
17 opelxpi 4711 . . . . . . 7 ((𝐴P ∧ 1PP) → ⟨𝐴, 1P⟩ ∈ (P × P))
18 enrex 7857 . . . . . . . 8 ~R ∈ V
1918ecelqsi 6683 . . . . . . 7 (⟨𝐴, 1P⟩ ∈ (P × P) → [⟨𝐴, 1P⟩] ~R ∈ ((P × P) / ~R ))
2017, 19syl 14 . . . . . 6 ((𝐴P ∧ 1PP) → [⟨𝐴, 1P⟩] ~R ∈ ((P × P) / ~R ))
211, 20mpan2 425 . . . . 5 (𝐴P → [⟨𝐴, 1P⟩] ~R ∈ ((P × P) / ~R ))
22 df-nr 7847 . . . . 5 R = ((P × P) / ~R )
2321, 22eleqtrrdi 2300 . . . 4 (𝐴P → [⟨𝐴, 1P⟩] ~RR)
24 simpr 110 . . . 4 ((𝐴P𝐶R) → 𝐶R)
25 ltasrg 7890 . . . 4 ((-1RR ∧ [⟨𝐴, 1P⟩] ~RR𝐶R) → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R )))
2616, 23, 24, 25mp3an2ani 1357 . . 3 ((𝐴P𝐶R) → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R )))
2715, 26bitr3d 190 . 2 ((𝐴P𝐶R) → ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R )))
286, 27mpbid 147 1 ((𝐴P𝐶R) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2177  cop 3637   class class class wbr 4047   × cxp 4677  (class class class)co 5951  [cec 6625   / cqs 6626  Pcnp 7411  1Pc1p 7412   +P cpp 7413  <P cltp 7415   ~R cer 7416  Rcnr 7417  -1Rcm1r 7420   +R cplr 7421   <R cltr 7423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-2o 6510  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-lti 7427  df-plpq 7464  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473  df-enq0 7544  df-nq0 7545  df-0nq0 7546  df-plq0 7547  df-mq0 7548  df-inp 7586  df-i1p 7587  df-iplp 7588  df-iltp 7590  df-enr 7846  df-nr 7847  df-plr 7848  df-ltr 7850  df-m1r 7853
This theorem is referenced by:  map2psrprg  7925  suplocsrlemb  7926  suplocsrlem  7928
  Copyright terms: Public domain W3C validator