ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mappsrprg GIF version

Theorem mappsrprg 7864
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
mappsrprg ((𝐴P𝐶R) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ))

Proof of Theorem mappsrprg
StepHypRef Expression
1 1pr 7614 . . . . 5 1PP
2 addclpr 7597 . . . . 5 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
31, 1, 2mp2an 426 . . . 4 (1P +P 1P) ∈ P
4 ltaddpr 7657 . . . 4 (((1P +P 1P) ∈ P𝐴P) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
53, 4mpan 424 . . 3 (𝐴P → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
65adantr 276 . 2 ((𝐴P𝐶R) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
7 df-m1r 7793 . . . . . 6 -1R = [⟨1P, (1P +P 1P)⟩] ~R
87breq1i 4036 . . . . 5 (-1R <R [⟨𝐴, 1P⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R )
91a1i 9 . . . . . 6 (𝐴P → 1PP)
103a1i 9 . . . . . 6 (𝐴P → (1P +P 1P) ∈ P)
11 id 19 . . . . . 6 (𝐴P𝐴P)
12 ltsrprg 7807 . . . . . 6 (((1PP ∧ (1P +P 1P) ∈ P) ∧ (𝐴P ∧ 1PP)) → ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)))
139, 10, 11, 9, 12syl22anc 1250 . . . . 5 (𝐴P → ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)))
148, 13bitrid 192 . . . 4 (𝐴P → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)))
1514adantr 276 . . 3 ((𝐴P𝐶R) → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)))
16 m1r 7812 . . . 4 -1RR
17 opelxpi 4691 . . . . . . 7 ((𝐴P ∧ 1PP) → ⟨𝐴, 1P⟩ ∈ (P × P))
18 enrex 7797 . . . . . . . 8 ~R ∈ V
1918ecelqsi 6643 . . . . . . 7 (⟨𝐴, 1P⟩ ∈ (P × P) → [⟨𝐴, 1P⟩] ~R ∈ ((P × P) / ~R ))
2017, 19syl 14 . . . . . 6 ((𝐴P ∧ 1PP) → [⟨𝐴, 1P⟩] ~R ∈ ((P × P) / ~R ))
211, 20mpan2 425 . . . . 5 (𝐴P → [⟨𝐴, 1P⟩] ~R ∈ ((P × P) / ~R ))
22 df-nr 7787 . . . . 5 R = ((P × P) / ~R )
2321, 22eleqtrrdi 2287 . . . 4 (𝐴P → [⟨𝐴, 1P⟩] ~RR)
24 simpr 110 . . . 4 ((𝐴P𝐶R) → 𝐶R)
25 ltasrg 7830 . . . 4 ((-1RR ∧ [⟨𝐴, 1P⟩] ~RR𝐶R) → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R )))
2616, 23, 24, 25mp3an2ani 1355 . . 3 ((𝐴P𝐶R) → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R )))
2715, 26bitr3d 190 . 2 ((𝐴P𝐶R) → ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R )))
286, 27mpbid 147 1 ((𝐴P𝐶R) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  cop 3621   class class class wbr 4029   × cxp 4657  (class class class)co 5918  [cec 6585   / cqs 6586  Pcnp 7351  1Pc1p 7352   +P cpp 7353  <P cltp 7355   ~R cer 7356  Rcnr 7357  -1Rcm1r 7360   +R cplr 7361   <R cltr 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-i1p 7527  df-iplp 7528  df-iltp 7530  df-enr 7786  df-nr 7787  df-plr 7788  df-ltr 7790  df-m1r 7793
This theorem is referenced by:  map2psrprg  7865  suplocsrlemb  7866  suplocsrlem  7868
  Copyright terms: Public domain W3C validator