Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neneqad | GIF version |
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2357. One-way deduction form of df-ne 2337. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
neneqad.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neneqad | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneqad.1 | . . 3 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
2 | 1 | con2i 617 | . 2 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
3 | 2 | necon2ai 2390 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1343 ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-ne 2337 |
This theorem is referenced by: ne0i 3415 nsuceq0g 4396 fidifsnen 6836 nqnq0pi 7379 xrlttri3 9733 |
Copyright terms: Public domain | W3C validator |