ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xblss2ps GIF version

Theorem xblss2ps 15072
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 15075 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Hypotheses
Ref Expression
xblss2ps.1 (𝜑𝐷 ∈ (PsMet‘𝑋))
xblss2ps.2 (𝜑𝑃𝑋)
xblss2ps.3 (𝜑𝑄𝑋)
xblss2ps.4 (𝜑𝑅 ∈ ℝ*)
xblss2ps.5 (𝜑𝑆 ∈ ℝ*)
xblss2ps.6 (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)
xblss2ps.7 (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
Assertion
Ref Expression
xblss2ps (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))

Proof of Theorem xblss2ps
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xblss2ps.1 . . . . . 6 (𝜑𝐷 ∈ (PsMet‘𝑋))
2 xblss2ps.2 . . . . . 6 (𝜑𝑃𝑋)
3 xblss2ps.4 . . . . . 6 (𝜑𝑅 ∈ ℝ*)
4 elblps 15058 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
51, 2, 3, 4syl3anc 1271 . . . . 5 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
65simprbda 383 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥𝑋)
71adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝐷 ∈ (PsMet‘𝑋))
8 xblss2ps.3 . . . . . . . . 9 (𝜑𝑄𝑋)
98adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑄𝑋)
10 psmetcl 14994 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑄𝑋𝑥𝑋) → (𝑄𝐷𝑥) ∈ ℝ*)
117, 9, 6, 10syl3anc 1271 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) ∈ ℝ*)
1211adantr 276 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) ∈ ℝ*)
13 xblss2ps.6 . . . . . . . . . 10 (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)
1413adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ∈ ℝ)
1514rexrd 8192 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ∈ ℝ*)
163adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑅 ∈ ℝ*)
1715, 16xaddcld 10076 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ∈ ℝ*)
1817adantr 276 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ∈ ℝ*)
19 xblss2ps.5 . . . . . . 7 (𝜑𝑆 ∈ ℝ*)
2019ad2antrr 488 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → 𝑆 ∈ ℝ*)
212adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑃𝑋)
22 psmetcl 14994 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
237, 21, 6, 22syl3anc 1271 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) ∈ ℝ*)
2415, 23xaddcld 10076 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) ∈ ℝ*)
25 psmettri2 14996 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑃𝑋𝑄𝑋𝑥𝑋)) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)))
267, 21, 9, 6, 25syl13anc 1273 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)))
275simplbda 384 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) < 𝑅)
28 xltadd2 10069 . . . . . . . . . 10 (((𝑃𝐷𝑥) ∈ ℝ*𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑄) ∈ ℝ) → ((𝑃𝐷𝑥) < 𝑅 ↔ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅)))
2923, 16, 14, 28syl3anc 1271 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑥) < 𝑅 ↔ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅)))
3027, 29mpbid 147 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3111, 24, 17, 26, 30xrlelttrd 10002 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3231adantr 276 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3319adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑆 ∈ ℝ*)
3416xnegcld 10047 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → -𝑒𝑅 ∈ ℝ*)
3533, 34xaddcld 10076 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑆 +𝑒 -𝑒𝑅) ∈ ℝ*)
36 xblss2ps.7 . . . . . . . . . 10 (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
3736adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
38 xleadd1a 10065 . . . . . . . . 9 ((((𝑃𝐷𝑄) ∈ ℝ* ∧ (𝑆 +𝑒 -𝑒𝑅) ∈ ℝ*𝑅 ∈ ℝ*) ∧ (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
3915, 35, 16, 37, 38syl31anc 1274 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
4039adantr 276 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
41 xnpcan 10064 . . . . . . . 8 ((𝑆 ∈ ℝ*𝑅 ∈ ℝ) → ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅) = 𝑆)
4233, 41sylan 283 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅) = 𝑆)
4340, 42breqtrd 4108 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ 𝑆)
4412, 18, 20, 32, 43xrltletrd 10003 . . . . 5 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) < 𝑆)
4511adantr 276 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) ∈ ℝ*)
4613ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑄) ∈ ℝ)
47 simpll 527 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝜑)
48 simplr 528 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
49 simpr 110 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑅 = +∞)
5049oveq2d 6016 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃(ball‘𝐷)𝑅) = (𝑃(ball‘𝐷)+∞))
5148, 50eleqtrd 2308 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑥 ∈ (𝑃(ball‘𝐷)+∞))
52 xblpnfps 15066 . . . . . . . . . . . 12 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
531, 2, 52syl2anc 411 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
5453simplbda 384 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃𝐷𝑥) ∈ ℝ)
5547, 51, 54syl2anc 411 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑥) ∈ ℝ)
5646, 55readdcld 8172 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑃𝐷𝑄) + (𝑃𝐷𝑥)) ∈ ℝ)
5756rexrd 8192 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑃𝐷𝑄) + (𝑃𝐷𝑥)) ∈ ℝ*)
58 pnfxr 8195 . . . . . . . 8 +∞ ∈ ℝ*
5958a1i 9 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → +∞ ∈ ℝ*)
601ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝐷 ∈ (PsMet‘𝑋))
612ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑃𝑋)
628ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑄𝑋)
636adantr 276 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑥𝑋)
6460, 61, 62, 63, 25syl13anc 1273 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)))
6546, 55rexaddd 10046 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) = ((𝑃𝐷𝑄) + (𝑃𝐷𝑥)))
6664, 65breqtrd 4108 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) + (𝑃𝐷𝑥)))
67 ltpnf 9972 . . . . . . . 8 (((𝑃𝐷𝑄) + (𝑃𝐷𝑥)) ∈ ℝ → ((𝑃𝐷𝑄) + (𝑃𝐷𝑥)) < +∞)
6856, 67syl 14 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑃𝐷𝑄) + (𝑃𝐷𝑥)) < +∞)
6945, 57, 59, 66, 68xrlelttrd 10002 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) < +∞)
7019ad2antrr 488 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑆 ∈ ℝ*)
71 xrpnfdc 10034 . . . . . . . 8 (𝑆 ∈ ℝ*DECID 𝑆 = +∞)
7270, 71syl 14 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → DECID 𝑆 = +∞)
73 0xr 8189 . . . . . . . . . . 11 0 ∈ ℝ*
7473a1i 9 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ∈ ℝ*)
75 psmetge0 14999 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → 0 ≤ (𝑃𝐷𝑄))
767, 21, 9, 75syl3anc 1271 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑃𝐷𝑄))
7774, 15, 35, 76, 37xrletrd 10004 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑆 +𝑒 -𝑒𝑅))
78 ge0nemnf 10016 . . . . . . . . 9 (((𝑆 +𝑒 -𝑒𝑅) ∈ ℝ* ∧ 0 ≤ (𝑆 +𝑒 -𝑒𝑅)) → (𝑆 +𝑒 -𝑒𝑅) ≠ -∞)
7935, 77, 78syl2anc 411 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑆 +𝑒 -𝑒𝑅) ≠ -∞)
8079adantr 276 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒 -𝑒𝑅) ≠ -∞)
81 xaddmnf1 10040 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ*𝑆 ≠ +∞) → (𝑆 +𝑒 -∞) = -∞)
8281ex 115 . . . . . . . . . . 11 (𝑆 ∈ ℝ* → (𝑆 ≠ +∞ → (𝑆 +𝑒 -∞) = -∞))
8370, 82syl 14 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 ≠ +∞ → (𝑆 +𝑒 -∞) = -∞))
84 xnegeq 10019 . . . . . . . . . . . . . 14 (𝑅 = +∞ → -𝑒𝑅 = -𝑒+∞)
8549, 84syl 14 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → -𝑒𝑅 = -𝑒+∞)
86 xnegpnf 10020 . . . . . . . . . . . . 13 -𝑒+∞ = -∞
8785, 86eqtrdi 2278 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → -𝑒𝑅 = -∞)
8887oveq2d 6016 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒 -𝑒𝑅) = (𝑆 +𝑒 -∞))
8988eqeq1d 2238 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑆 +𝑒 -𝑒𝑅) = -∞ ↔ (𝑆 +𝑒 -∞) = -∞))
9083, 89sylibrd 169 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 ≠ +∞ → (𝑆 +𝑒 -𝑒𝑅) = -∞))
9190a1d 22 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (DECID 𝑆 = +∞ → (𝑆 ≠ +∞ → (𝑆 +𝑒 -𝑒𝑅) = -∞)))
9291necon1ddc 2478 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (DECID 𝑆 = +∞ → ((𝑆 +𝑒 -𝑒𝑅) ≠ -∞ → 𝑆 = +∞)))
9372, 80, 92mp2d 47 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑆 = +∞)
9469, 93breqtrrd 4110 . . . . 5 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) < 𝑆)
95 psmetge0 14999 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
967, 21, 6, 95syl3anc 1271 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑃𝐷𝑥))
9774, 23, 16, 96, 27xrlelttrd 10002 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅)
9874, 16, 97xrltled 9991 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ 𝑅)
99 ge0nemnf 10016 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → 𝑅 ≠ -∞)
10016, 98, 99syl2anc 411 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑅 ≠ -∞)
10116, 100jca 306 . . . . . 6 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑅 ∈ ℝ*𝑅 ≠ -∞))
102 xrnemnf 9969 . . . . . 6 ((𝑅 ∈ ℝ*𝑅 ≠ -∞) ↔ (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
103101, 102sylib 122 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
10444, 94, 103mpjaodan 803 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) < 𝑆)
105 elblps 15058 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑄𝑋𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1067, 9, 33, 105syl3anc 1271 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1076, 104, 106mpbir2and 950 . . 3 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ (𝑄(ball‘𝐷)𝑆))
108107ex 115 . 2 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)))
109108ssrdv 3230 1 (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400  wss 3197   class class class wbr 4082  cfv 5317  (class class class)co 6000  cr 7994  0cc0 7995   + caddc 7998  +∞cpnf 8174  -∞cmnf 8175  *cxr 8176   < clt 8177  cle 8178  -𝑒cxne 9961   +𝑒 cxad 9962  PsMetcpsmet 14493  ballcbl 14496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-2 9165  df-xneg 9964  df-xadd 9965  df-psmet 14501  df-bl 14504
This theorem is referenced by:  blss2ps  15074  ssblps  15093
  Copyright terms: Public domain W3C validator