ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xblss2ps GIF version

Theorem xblss2ps 13943
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 13946 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Hypotheses
Ref Expression
xblss2ps.1 (πœ‘ β†’ 𝐷 ∈ (PsMetβ€˜π‘‹))
xblss2ps.2 (πœ‘ β†’ 𝑃 ∈ 𝑋)
xblss2ps.3 (πœ‘ β†’ 𝑄 ∈ 𝑋)
xblss2ps.4 (πœ‘ β†’ 𝑅 ∈ ℝ*)
xblss2ps.5 (πœ‘ β†’ 𝑆 ∈ ℝ*)
xblss2ps.6 (πœ‘ β†’ (𝑃𝐷𝑄) ∈ ℝ)
xblss2ps.7 (πœ‘ β†’ (𝑃𝐷𝑄) ≀ (𝑆 +𝑒 -𝑒𝑅))
Assertion
Ref Expression
xblss2ps (πœ‘ β†’ (𝑃(ballβ€˜π·)𝑅) βŠ† (𝑄(ballβ€˜π·)𝑆))

Proof of Theorem xblss2ps
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 xblss2ps.1 . . . . . 6 (πœ‘ β†’ 𝐷 ∈ (PsMetβ€˜π‘‹))
2 xblss2ps.2 . . . . . 6 (πœ‘ β†’ 𝑃 ∈ 𝑋)
3 xblss2ps.4 . . . . . 6 (πœ‘ β†’ 𝑅 ∈ ℝ*)
4 elblps 13929 . . . . . 6 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅) ↔ (π‘₯ ∈ 𝑋 ∧ (𝑃𝐷π‘₯) < 𝑅)))
51, 2, 3, 4syl3anc 1238 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅) ↔ (π‘₯ ∈ 𝑋 ∧ (𝑃𝐷π‘₯) < 𝑅)))
65simprbda 383 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ π‘₯ ∈ 𝑋)
71adantr 276 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 𝐷 ∈ (PsMetβ€˜π‘‹))
8 xblss2ps.3 . . . . . . . . 9 (πœ‘ β†’ 𝑄 ∈ 𝑋)
98adantr 276 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 𝑄 ∈ 𝑋)
10 psmetcl 13865 . . . . . . . 8 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑄 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋) β†’ (𝑄𝐷π‘₯) ∈ ℝ*)
117, 9, 6, 10syl3anc 1238 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑄𝐷π‘₯) ∈ ℝ*)
1211adantr 276 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 ∈ ℝ) β†’ (𝑄𝐷π‘₯) ∈ ℝ*)
13 xblss2ps.6 . . . . . . . . . 10 (πœ‘ β†’ (𝑃𝐷𝑄) ∈ ℝ)
1413adantr 276 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑃𝐷𝑄) ∈ ℝ)
1514rexrd 8009 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑃𝐷𝑄) ∈ ℝ*)
163adantr 276 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 𝑅 ∈ ℝ*)
1715, 16xaddcld 9886 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ ((𝑃𝐷𝑄) +𝑒 𝑅) ∈ ℝ*)
1817adantr 276 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 ∈ ℝ) β†’ ((𝑃𝐷𝑄) +𝑒 𝑅) ∈ ℝ*)
19 xblss2ps.5 . . . . . . 7 (πœ‘ β†’ 𝑆 ∈ ℝ*)
2019ad2antrr 488 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 ∈ ℝ) β†’ 𝑆 ∈ ℝ*)
212adantr 276 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 𝑃 ∈ 𝑋)
22 psmetcl 13865 . . . . . . . . . 10 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋) β†’ (𝑃𝐷π‘₯) ∈ ℝ*)
237, 21, 6, 22syl3anc 1238 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑃𝐷π‘₯) ∈ ℝ*)
2415, 23xaddcld 9886 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷π‘₯)) ∈ ℝ*)
25 psmettri2 13867 . . . . . . . . 9 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋)) β†’ (𝑄𝐷π‘₯) ≀ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷π‘₯)))
267, 21, 9, 6, 25syl13anc 1240 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑄𝐷π‘₯) ≀ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷π‘₯)))
275simplbda 384 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑃𝐷π‘₯) < 𝑅)
28 xltadd2 9879 . . . . . . . . . 10 (((𝑃𝐷π‘₯) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑄) ∈ ℝ) β†’ ((𝑃𝐷π‘₯) < 𝑅 ↔ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷π‘₯)) < ((𝑃𝐷𝑄) +𝑒 𝑅)))
2923, 16, 14, 28syl3anc 1238 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ ((𝑃𝐷π‘₯) < 𝑅 ↔ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷π‘₯)) < ((𝑃𝐷𝑄) +𝑒 𝑅)))
3027, 29mpbid 147 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷π‘₯)) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3111, 24, 17, 26, 30xrlelttrd 9812 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑄𝐷π‘₯) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3231adantr 276 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 ∈ ℝ) β†’ (𝑄𝐷π‘₯) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3319adantr 276 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 𝑆 ∈ ℝ*)
3416xnegcld 9857 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ -𝑒𝑅 ∈ ℝ*)
3533, 34xaddcld 9886 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑆 +𝑒 -𝑒𝑅) ∈ ℝ*)
36 xblss2ps.7 . . . . . . . . . 10 (πœ‘ β†’ (𝑃𝐷𝑄) ≀ (𝑆 +𝑒 -𝑒𝑅))
3736adantr 276 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑃𝐷𝑄) ≀ (𝑆 +𝑒 -𝑒𝑅))
38 xleadd1a 9875 . . . . . . . . 9 ((((𝑃𝐷𝑄) ∈ ℝ* ∧ (𝑆 +𝑒 -𝑒𝑅) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝐷𝑄) ≀ (𝑆 +𝑒 -𝑒𝑅)) β†’ ((𝑃𝐷𝑄) +𝑒 𝑅) ≀ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
3915, 35, 16, 37, 38syl31anc 1241 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ ((𝑃𝐷𝑄) +𝑒 𝑅) ≀ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
4039adantr 276 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 ∈ ℝ) β†’ ((𝑃𝐷𝑄) +𝑒 𝑅) ≀ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
41 xnpcan 9874 . . . . . . . 8 ((𝑆 ∈ ℝ* ∧ 𝑅 ∈ ℝ) β†’ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅) = 𝑆)
4233, 41sylan 283 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 ∈ ℝ) β†’ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅) = 𝑆)
4340, 42breqtrd 4031 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 ∈ ℝ) β†’ ((𝑃𝐷𝑄) +𝑒 𝑅) ≀ 𝑆)
4412, 18, 20, 32, 43xrltletrd 9813 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 ∈ ℝ) β†’ (𝑄𝐷π‘₯) < 𝑆)
4511adantr 276 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (𝑄𝐷π‘₯) ∈ ℝ*)
4613ad2antrr 488 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (𝑃𝐷𝑄) ∈ ℝ)
47 simpll 527 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ πœ‘)
48 simplr 528 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅))
49 simpr 110 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ 𝑅 = +∞)
5049oveq2d 5893 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (𝑃(ballβ€˜π·)𝑅) = (𝑃(ballβ€˜π·)+∞))
5148, 50eleqtrd 2256 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ π‘₯ ∈ (𝑃(ballβ€˜π·)+∞))
52 xblpnfps 13937 . . . . . . . . . . . 12 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (π‘₯ ∈ (𝑃(ballβ€˜π·)+∞) ↔ (π‘₯ ∈ 𝑋 ∧ (𝑃𝐷π‘₯) ∈ ℝ)))
531, 2, 52syl2anc 411 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯ ∈ (𝑃(ballβ€˜π·)+∞) ↔ (π‘₯ ∈ 𝑋 ∧ (𝑃𝐷π‘₯) ∈ ℝ)))
5453simplbda 384 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)+∞)) β†’ (𝑃𝐷π‘₯) ∈ ℝ)
5547, 51, 54syl2anc 411 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (𝑃𝐷π‘₯) ∈ ℝ)
5646, 55readdcld 7989 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ ((𝑃𝐷𝑄) + (𝑃𝐷π‘₯)) ∈ ℝ)
5756rexrd 8009 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ ((𝑃𝐷𝑄) + (𝑃𝐷π‘₯)) ∈ ℝ*)
58 pnfxr 8012 . . . . . . . 8 +∞ ∈ ℝ*
5958a1i 9 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ +∞ ∈ ℝ*)
601ad2antrr 488 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ 𝐷 ∈ (PsMetβ€˜π‘‹))
612ad2antrr 488 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ 𝑃 ∈ 𝑋)
628ad2antrr 488 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ 𝑄 ∈ 𝑋)
636adantr 276 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ π‘₯ ∈ 𝑋)
6460, 61, 62, 63, 25syl13anc 1240 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (𝑄𝐷π‘₯) ≀ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷π‘₯)))
6546, 55rexaddd 9856 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷π‘₯)) = ((𝑃𝐷𝑄) + (𝑃𝐷π‘₯)))
6664, 65breqtrd 4031 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (𝑄𝐷π‘₯) ≀ ((𝑃𝐷𝑄) + (𝑃𝐷π‘₯)))
67 ltpnf 9782 . . . . . . . 8 (((𝑃𝐷𝑄) + (𝑃𝐷π‘₯)) ∈ ℝ β†’ ((𝑃𝐷𝑄) + (𝑃𝐷π‘₯)) < +∞)
6856, 67syl 14 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ ((𝑃𝐷𝑄) + (𝑃𝐷π‘₯)) < +∞)
6945, 57, 59, 66, 68xrlelttrd 9812 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (𝑄𝐷π‘₯) < +∞)
7019ad2antrr 488 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ 𝑆 ∈ ℝ*)
71 xrpnfdc 9844 . . . . . . . 8 (𝑆 ∈ ℝ* β†’ DECID 𝑆 = +∞)
7270, 71syl 14 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ DECID 𝑆 = +∞)
73 0xr 8006 . . . . . . . . . . 11 0 ∈ ℝ*
7473a1i 9 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 0 ∈ ℝ*)
75 psmetge0 13870 . . . . . . . . . . 11 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) β†’ 0 ≀ (𝑃𝐷𝑄))
767, 21, 9, 75syl3anc 1238 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 0 ≀ (𝑃𝐷𝑄))
7774, 15, 35, 76, 37xrletrd 9814 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 0 ≀ (𝑆 +𝑒 -𝑒𝑅))
78 ge0nemnf 9826 . . . . . . . . 9 (((𝑆 +𝑒 -𝑒𝑅) ∈ ℝ* ∧ 0 ≀ (𝑆 +𝑒 -𝑒𝑅)) β†’ (𝑆 +𝑒 -𝑒𝑅) β‰  -∞)
7935, 77, 78syl2anc 411 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑆 +𝑒 -𝑒𝑅) β‰  -∞)
8079adantr 276 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (𝑆 +𝑒 -𝑒𝑅) β‰  -∞)
81 xaddmnf1 9850 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ* ∧ 𝑆 β‰  +∞) β†’ (𝑆 +𝑒 -∞) = -∞)
8281ex 115 . . . . . . . . . . 11 (𝑆 ∈ ℝ* β†’ (𝑆 β‰  +∞ β†’ (𝑆 +𝑒 -∞) = -∞))
8370, 82syl 14 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (𝑆 β‰  +∞ β†’ (𝑆 +𝑒 -∞) = -∞))
84 xnegeq 9829 . . . . . . . . . . . . . 14 (𝑅 = +∞ β†’ -𝑒𝑅 = -𝑒+∞)
8549, 84syl 14 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ -𝑒𝑅 = -𝑒+∞)
86 xnegpnf 9830 . . . . . . . . . . . . 13 -𝑒+∞ = -∞
8785, 86eqtrdi 2226 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ -𝑒𝑅 = -∞)
8887oveq2d 5893 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (𝑆 +𝑒 -𝑒𝑅) = (𝑆 +𝑒 -∞))
8988eqeq1d 2186 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ ((𝑆 +𝑒 -𝑒𝑅) = -∞ ↔ (𝑆 +𝑒 -∞) = -∞))
9083, 89sylibrd 169 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (𝑆 β‰  +∞ β†’ (𝑆 +𝑒 -𝑒𝑅) = -∞))
9190a1d 22 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (DECID 𝑆 = +∞ β†’ (𝑆 β‰  +∞ β†’ (𝑆 +𝑒 -𝑒𝑅) = -∞)))
9291necon1ddc 2425 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (DECID 𝑆 = +∞ β†’ ((𝑆 +𝑒 -𝑒𝑅) β‰  -∞ β†’ 𝑆 = +∞)))
9372, 80, 92mp2d 47 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ 𝑆 = +∞)
9469, 93breqtrrd 4033 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) ∧ 𝑅 = +∞) β†’ (𝑄𝐷π‘₯) < 𝑆)
95 psmetge0 13870 . . . . . . . . . . 11 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋) β†’ 0 ≀ (𝑃𝐷π‘₯))
967, 21, 6, 95syl3anc 1238 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 0 ≀ (𝑃𝐷π‘₯))
9774, 23, 16, 96, 27xrlelttrd 9812 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 0 < 𝑅)
9874, 16, 97xrltled 9801 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 0 ≀ 𝑅)
99 ge0nemnf 9826 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ 0 ≀ 𝑅) β†’ 𝑅 β‰  -∞)
10016, 98, 99syl2anc 411 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ 𝑅 β‰  -∞)
10116, 100jca 306 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑅 ∈ ℝ* ∧ 𝑅 β‰  -∞))
102 xrnemnf 9779 . . . . . 6 ((𝑅 ∈ ℝ* ∧ 𝑅 β‰  -∞) ↔ (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
103101, 102sylib 122 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
10444, 94, 103mpjaodan 798 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (𝑄𝐷π‘₯) < 𝑆)
105 elblps 13929 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑄 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) β†’ (π‘₯ ∈ (𝑄(ballβ€˜π·)𝑆) ↔ (π‘₯ ∈ 𝑋 ∧ (𝑄𝐷π‘₯) < 𝑆)))
1067, 9, 33, 105syl3anc 1238 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ (π‘₯ ∈ (𝑄(ballβ€˜π·)𝑆) ↔ (π‘₯ ∈ 𝑋 ∧ (𝑄𝐷π‘₯) < 𝑆)))
1076, 104, 106mpbir2and 944 . . 3 ((πœ‘ ∧ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅)) β†’ π‘₯ ∈ (𝑄(ballβ€˜π·)𝑆))
108107ex 115 . 2 (πœ‘ β†’ (π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅) β†’ π‘₯ ∈ (𝑄(ballβ€˜π·)𝑆)))
109108ssrdv 3163 1 (πœ‘ β†’ (𝑃(ballβ€˜π·)𝑅) βŠ† (𝑄(ballβ€˜π·)𝑆))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∨ wo 708  DECID wdc 834   = wceq 1353   ∈ wcel 2148   β‰  wne 2347   βŠ† wss 3131   class class class wbr 4005  β€˜cfv 5218  (class class class)co 5877  β„cr 7812  0cc0 7813   + caddc 7816  +∞cpnf 7991  -∞cmnf 7992  β„*cxr 7993   < clt 7994   ≀ cle 7995  -𝑒cxne 9771   +𝑒 cxad 9772  PsMetcpsmet 13478  ballcbl 13481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-2 8980  df-xneg 9774  df-xadd 9775  df-psmet 13486  df-bl 13489
This theorem is referenced by:  blss2ps  13945  ssblps  13964
  Copyright terms: Public domain W3C validator