Step | Hyp | Ref
| Expression |
1 | | xblss2.1 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
2 | | xblss2.2 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ 𝑋) |
3 | | xblss2.4 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈
ℝ*) |
4 | | elbl 13031 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
5 | 1, 2, 3, 4 | syl3anc 1228 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
6 | 5 | simprbda 381 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ 𝑋) |
7 | 1 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
8 | | xblss2.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ 𝑋) |
9 | 8 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑄 ∈ 𝑋) |
10 | | xmetcl 12992 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑄𝐷𝑥) ∈
ℝ*) |
11 | 7, 9, 6, 10 | syl3anc 1228 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) ∈
ℝ*) |
12 | 11 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) ∈
ℝ*) |
13 | | xblss2.6 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃𝐷𝑄) ∈ ℝ) |
14 | 13 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ∈ ℝ) |
15 | 14 | rexrd 7948 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ∈
ℝ*) |
16 | 3 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑅 ∈
ℝ*) |
17 | 15, 16 | xaddcld 9820 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ∈
ℝ*) |
18 | 17 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ∈
ℝ*) |
19 | | xblss2.5 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈
ℝ*) |
20 | 19 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → 𝑆 ∈
ℝ*) |
21 | 2 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑃 ∈ 𝑋) |
22 | | xmetcl 12992 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷𝑥) ∈
ℝ*) |
23 | 7, 21, 6, 22 | syl3anc 1228 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) ∈
ℝ*) |
24 | 15, 23 | xaddcld 9820 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) ∈
ℝ*) |
25 | | xmettri2 13001 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥))) |
26 | 7, 21, 9, 6, 25 | syl13anc 1230 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥))) |
27 | 5 | simplbda 382 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) < 𝑅) |
28 | | xltadd2 9813 |
. . . . . . . . . 10
⊢ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 𝑅 ∈ ℝ*
∧ (𝑃𝐷𝑄) ∈ ℝ) → ((𝑃𝐷𝑥) < 𝑅 ↔ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅))) |
29 | 23, 16, 14, 28 | syl3anc 1228 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑥) < 𝑅 ↔ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅))) |
30 | 27, 29 | mpbid 146 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅)) |
31 | 11, 24, 17, 26, 30 | xrlelttrd 9746 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) < ((𝑃𝐷𝑄) +𝑒 𝑅)) |
32 | 31 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) < ((𝑃𝐷𝑄) +𝑒 𝑅)) |
33 | 19 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑆 ∈
ℝ*) |
34 | 16 | xnegcld 9791 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → -𝑒𝑅 ∈
ℝ*) |
35 | 33, 34 | xaddcld 9820 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑆 +𝑒
-𝑒𝑅)
∈ ℝ*) |
36 | | xblss2.7 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒
-𝑒𝑅)) |
37 | 36 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒
-𝑒𝑅)) |
38 | | xleadd1a 9809 |
. . . . . . . . 9
⊢ ((((𝑃𝐷𝑄) ∈ ℝ* ∧ (𝑆 +𝑒
-𝑒𝑅)
∈ ℝ* ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝐷𝑄) ≤ (𝑆 +𝑒
-𝑒𝑅))
→ ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒
-𝑒𝑅)
+𝑒 𝑅)) |
39 | 15, 35, 16, 37, 38 | syl31anc 1231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒
-𝑒𝑅)
+𝑒 𝑅)) |
40 | 39 | adantr 274 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒
-𝑒𝑅)
+𝑒 𝑅)) |
41 | | xnpcan 9808 |
. . . . . . . 8
⊢ ((𝑆 ∈ ℝ*
∧ 𝑅 ∈ ℝ)
→ ((𝑆
+𝑒 -𝑒𝑅) +𝑒 𝑅) = 𝑆) |
42 | 33, 41 | sylan 281 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑆 +𝑒
-𝑒𝑅)
+𝑒 𝑅) =
𝑆) |
43 | 40, 42 | breqtrd 4008 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ 𝑆) |
44 | 12, 18, 20, 32, 43 | xrltletrd 9747 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) < 𝑆) |
45 | 27 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑥) < 𝑅) |
46 | 36 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒
-𝑒𝑅)) |
47 | 19 | ad2antrr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑆 ∈
ℝ*) |
48 | | xrpnfdc 9778 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ ℝ*
→ DECID 𝑆 = +∞) |
49 | 47, 48 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → DECID
𝑆 =
+∞) |
50 | | 0xr 7945 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ* |
51 | 50 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ∈
ℝ*) |
52 | | xmetge0 13005 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → 0 ≤ (𝑃𝐷𝑄)) |
53 | 7, 21, 9, 52 | syl3anc 1228 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑃𝐷𝑄)) |
54 | 51, 15, 35, 53, 37 | xrletrd 9748 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑆 +𝑒
-𝑒𝑅)) |
55 | | ge0nemnf 9760 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 +𝑒
-𝑒𝑅)
∈ ℝ* ∧ 0 ≤ (𝑆 +𝑒
-𝑒𝑅))
→ (𝑆
+𝑒 -𝑒𝑅) ≠ -∞) |
56 | 35, 54, 55 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑆 +𝑒
-𝑒𝑅)
≠ -∞) |
57 | 56 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒
-𝑒𝑅)
≠ -∞) |
58 | | xaddmnf1 9784 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ ℝ*
∧ 𝑆 ≠ +∞)
→ (𝑆
+𝑒 -∞) = -∞) |
59 | 58 | ex 114 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈ ℝ*
→ (𝑆 ≠ +∞
→ (𝑆
+𝑒 -∞) = -∞)) |
60 | 47, 59 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 ≠ +∞ → (𝑆 +𝑒 -∞) =
-∞)) |
61 | | simpr 109 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑅 = +∞) |
62 | | xnegeq 9763 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 = +∞ →
-𝑒𝑅 =
-𝑒+∞) |
63 | 61, 62 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) →
-𝑒𝑅 =
-𝑒+∞) |
64 | | xnegpnf 9764 |
. . . . . . . . . . . . . . . . . 18
⊢
-𝑒+∞ = -∞ |
65 | 63, 64 | eqtrdi 2215 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) →
-𝑒𝑅 =
-∞) |
66 | 65 | oveq2d 5858 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒
-𝑒𝑅) =
(𝑆 +𝑒
-∞)) |
67 | 66 | eqeq1d 2174 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑆 +𝑒
-𝑒𝑅) =
-∞ ↔ (𝑆
+𝑒 -∞) = -∞)) |
68 | 60, 67 | sylibrd 168 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 ≠ +∞ → (𝑆 +𝑒
-𝑒𝑅) =
-∞)) |
69 | 68 | a1d 22 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (DECID
𝑆 = +∞ → (𝑆 ≠ +∞ → (𝑆 +𝑒
-𝑒𝑅) =
-∞))) |
70 | 69 | necon1ddc 2414 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (DECID
𝑆 = +∞ → ((𝑆 +𝑒
-𝑒𝑅)
≠ -∞ → 𝑆 =
+∞))) |
71 | 49, 57, 70 | mp2d 47 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑆 = +∞) |
72 | 71, 65 | oveq12d 5860 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒
-𝑒𝑅) =
(+∞ +𝑒 -∞)) |
73 | | pnfaddmnf 9786 |
. . . . . . . . . 10
⊢ (+∞
+𝑒 -∞) = 0 |
74 | 72, 73 | eqtrdi 2215 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒
-𝑒𝑅) =
0) |
75 | 46, 74 | breqtrd 4008 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑄) ≤ 0) |
76 | 53 | biantrud 302 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) ≤ 0 ↔ ((𝑃𝐷𝑄) ≤ 0 ∧ 0 ≤ (𝑃𝐷𝑄)))) |
77 | | xrletri3 9740 |
. . . . . . . . . . 11
⊢ (((𝑃𝐷𝑄) ∈ ℝ* ∧ 0 ∈
ℝ*) → ((𝑃𝐷𝑄) = 0 ↔ ((𝑃𝐷𝑄) ≤ 0 ∧ 0 ≤ (𝑃𝐷𝑄)))) |
78 | 15, 50, 77 | sylancl 410 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) = 0 ↔ ((𝑃𝐷𝑄) ≤ 0 ∧ 0 ≤ (𝑃𝐷𝑄)))) |
79 | | xmeteq0 12999 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((𝑃𝐷𝑄) = 0 ↔ 𝑃 = 𝑄)) |
80 | 7, 21, 9, 79 | syl3anc 1228 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) = 0 ↔ 𝑃 = 𝑄)) |
81 | 76, 78, 80 | 3bitr2d 215 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) ≤ 0 ↔ 𝑃 = 𝑄)) |
82 | 81 | adantr 274 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑃𝐷𝑄) ≤ 0 ↔ 𝑃 = 𝑄)) |
83 | 75, 82 | mpbid 146 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑃 = 𝑄) |
84 | 83 | oveq1d 5857 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑥) = (𝑄𝐷𝑥)) |
85 | 61, 71 | eqtr4d 2201 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑅 = 𝑆) |
86 | 45, 84, 85 | 3brtr3d 4013 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) < 𝑆) |
87 | | xmetge0 13005 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → 0 ≤ (𝑃𝐷𝑥)) |
88 | 7, 21, 6, 87 | syl3anc 1228 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑃𝐷𝑥)) |
89 | 51, 23, 16, 88, 27 | xrlelttrd 9746 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅) |
90 | 51, 16, 89 | xrltled 9735 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ 𝑅) |
91 | | ge0nemnf 9760 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ*
∧ 0 ≤ 𝑅) →
𝑅 ≠
-∞) |
92 | 16, 90, 91 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑅 ≠ -∞) |
93 | 16, 92 | jca 304 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑅 ∈ ℝ* ∧ 𝑅 ≠
-∞)) |
94 | | xrnemnf 9713 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ*
∧ 𝑅 ≠ -∞)
↔ (𝑅 ∈ ℝ
∨ 𝑅 =
+∞)) |
95 | 93, 94 | sylib 121 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑅 ∈ ℝ ∨ 𝑅 = +∞)) |
96 | 44, 86, 95 | mpjaodan 788 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) < 𝑆) |
97 | | elbl 13031 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝑋 ∧ (𝑄𝐷𝑥) < 𝑆))) |
98 | 7, 9, 33, 97 | syl3anc 1228 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝑋 ∧ (𝑄𝐷𝑥) < 𝑆))) |
99 | 6, 96, 98 | mpbir2and 934 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) |
100 | 99 | ex 114 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 𝑥 ∈ (𝑄(ball‘𝐷)𝑆))) |
101 | 100 | ssrdv 3148 |
1
⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) |