Step | Hyp | Ref
| Expression |
1 | | xblss2.1 |
. . . . . 6
β’ (π β π· β (βMetβπ)) |
2 | | xblss2.2 |
. . . . . 6
β’ (π β π β π) |
3 | | xblss2.4 |
. . . . . 6
β’ (π β π
β
β*) |
4 | | elbl 13894 |
. . . . . 6
β’ ((π· β (βMetβπ) β§ π β π β§ π
β β*) β (π₯ β (π(ballβπ·)π
) β (π₯ β π β§ (ππ·π₯) < π
))) |
5 | 1, 2, 3, 4 | syl3anc 1238 |
. . . . 5
β’ (π β (π₯ β (π(ballβπ·)π
) β (π₯ β π β§ (ππ·π₯) < π
))) |
6 | 5 | simprbda 383 |
. . . 4
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β π₯ β π) |
7 | 1 | adantr 276 |
. . . . . . . 8
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β π· β (βMetβπ)) |
8 | | xblss2.3 |
. . . . . . . . 9
β’ (π β π β π) |
9 | 8 | adantr 276 |
. . . . . . . 8
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β π β π) |
10 | | xmetcl 13855 |
. . . . . . . 8
β’ ((π· β (βMetβπ) β§ π β π β§ π₯ β π) β (ππ·π₯) β
β*) |
11 | 7, 9, 6, 10 | syl3anc 1238 |
. . . . . . 7
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (ππ·π₯) β
β*) |
12 | 11 | adantr 276 |
. . . . . 6
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
β β) β (ππ·π₯) β
β*) |
13 | | xblss2.6 |
. . . . . . . . . 10
β’ (π β (ππ·π) β β) |
14 | 13 | adantr 276 |
. . . . . . . . 9
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (ππ·π) β β) |
15 | 14 | rexrd 8007 |
. . . . . . . 8
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (ππ·π) β
β*) |
16 | 3 | adantr 276 |
. . . . . . . 8
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β π
β
β*) |
17 | 15, 16 | xaddcld 9884 |
. . . . . . 7
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β ((ππ·π) +π π
) β
β*) |
18 | 17 | adantr 276 |
. . . . . 6
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
β β) β ((ππ·π) +π π
) β
β*) |
19 | | xblss2.5 |
. . . . . . 7
β’ (π β π β
β*) |
20 | 19 | ad2antrr 488 |
. . . . . 6
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
β β) β π β
β*) |
21 | 2 | adantr 276 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β π β π) |
22 | | xmetcl 13855 |
. . . . . . . . . 10
β’ ((π· β (βMetβπ) β§ π β π β§ π₯ β π) β (ππ·π₯) β
β*) |
23 | 7, 21, 6, 22 | syl3anc 1238 |
. . . . . . . . 9
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (ππ·π₯) β
β*) |
24 | 15, 23 | xaddcld 9884 |
. . . . . . . 8
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β ((ππ·π) +π (ππ·π₯)) β
β*) |
25 | | xmettri2 13864 |
. . . . . . . . 9
β’ ((π· β (βMetβπ) β§ (π β π β§ π β π β§ π₯ β π)) β (ππ·π₯) β€ ((ππ·π) +π (ππ·π₯))) |
26 | 7, 21, 9, 6, 25 | syl13anc 1240 |
. . . . . . . 8
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (ππ·π₯) β€ ((ππ·π) +π (ππ·π₯))) |
27 | 5 | simplbda 384 |
. . . . . . . . 9
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (ππ·π₯) < π
) |
28 | | xltadd2 9877 |
. . . . . . . . . 10
β’ (((ππ·π₯) β β* β§ π
β β*
β§ (ππ·π) β β) β ((ππ·π₯) < π
β ((ππ·π) +π (ππ·π₯)) < ((ππ·π) +π π
))) |
29 | 23, 16, 14, 28 | syl3anc 1238 |
. . . . . . . . 9
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β ((ππ·π₯) < π
β ((ππ·π) +π (ππ·π₯)) < ((ππ·π) +π π
))) |
30 | 27, 29 | mpbid 147 |
. . . . . . . 8
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β ((ππ·π) +π (ππ·π₯)) < ((ππ·π) +π π
)) |
31 | 11, 24, 17, 26, 30 | xrlelttrd 9810 |
. . . . . . 7
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (ππ·π₯) < ((ππ·π) +π π
)) |
32 | 31 | adantr 276 |
. . . . . 6
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
β β) β (ππ·π₯) < ((ππ·π) +π π
)) |
33 | 19 | adantr 276 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β π β
β*) |
34 | 16 | xnegcld 9855 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β -ππ
β
β*) |
35 | 33, 34 | xaddcld 9884 |
. . . . . . . . 9
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (π +π
-ππ
)
β β*) |
36 | | xblss2.7 |
. . . . . . . . . 10
β’ (π β (ππ·π) β€ (π +π
-ππ
)) |
37 | 36 | adantr 276 |
. . . . . . . . 9
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (ππ·π) β€ (π +π
-ππ
)) |
38 | | xleadd1a 9873 |
. . . . . . . . 9
β’ ((((ππ·π) β β* β§ (π +π
-ππ
)
β β* β§ π
β β*) β§ (ππ·π) β€ (π +π
-ππ
))
β ((ππ·π) +π π
) β€ ((π +π
-ππ
)
+π π
)) |
39 | 15, 35, 16, 37, 38 | syl31anc 1241 |
. . . . . . . 8
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β ((ππ·π) +π π
) β€ ((π +π
-ππ
)
+π π
)) |
40 | 39 | adantr 276 |
. . . . . . 7
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
β β) β ((ππ·π) +π π
) β€ ((π +π
-ππ
)
+π π
)) |
41 | | xnpcan 9872 |
. . . . . . . 8
β’ ((π β β*
β§ π
β β)
β ((π
+π -ππ
) +π π
) = π) |
42 | 33, 41 | sylan 283 |
. . . . . . 7
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
β β) β ((π +π
-ππ
)
+π π
) =
π) |
43 | 40, 42 | breqtrd 4030 |
. . . . . 6
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
β β) β ((ππ·π) +π π
) β€ π) |
44 | 12, 18, 20, 32, 43 | xrltletrd 9811 |
. . . . 5
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
β β) β (ππ·π₯) < π) |
45 | 27 | adantr 276 |
. . . . . 6
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (ππ·π₯) < π
) |
46 | 36 | ad2antrr 488 |
. . . . . . . . 9
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (ππ·π) β€ (π +π
-ππ
)) |
47 | 19 | ad2antrr 488 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β π β
β*) |
48 | | xrpnfdc 9842 |
. . . . . . . . . . . . 13
β’ (π β β*
β DECID π = +β) |
49 | 47, 48 | syl 14 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β DECID
π =
+β) |
50 | | 0xr 8004 |
. . . . . . . . . . . . . . . 16
β’ 0 β
β* |
51 | 50 | a1i 9 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β 0 β
β*) |
52 | | xmetge0 13868 |
. . . . . . . . . . . . . . . 16
β’ ((π· β (βMetβπ) β§ π β π β§ π β π) β 0 β€ (ππ·π)) |
53 | 7, 21, 9, 52 | syl3anc 1238 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β 0 β€ (ππ·π)) |
54 | 51, 15, 35, 53, 37 | xrletrd 9812 |
. . . . . . . . . . . . . 14
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β 0 β€ (π +π
-ππ
)) |
55 | | ge0nemnf 9824 |
. . . . . . . . . . . . . 14
β’ (((π +π
-ππ
)
β β* β§ 0 β€ (π +π
-ππ
))
β (π
+π -ππ
) β -β) |
56 | 35, 54, 55 | syl2anc 411 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (π +π
-ππ
)
β -β) |
57 | 56 | adantr 276 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (π +π
-ππ
)
β -β) |
58 | | xaddmnf1 9848 |
. . . . . . . . . . . . . . . . 17
β’ ((π β β*
β§ π β +β)
β (π
+π -β) = -β) |
59 | 58 | ex 115 |
. . . . . . . . . . . . . . . 16
β’ (π β β*
β (π β +β
β (π
+π -β) = -β)) |
60 | 47, 59 | syl 14 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (π β +β β (π +π -β) =
-β)) |
61 | | simpr 110 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β π
= +β) |
62 | | xnegeq 9827 |
. . . . . . . . . . . . . . . . . . 19
β’ (π
= +β β
-ππ
=
-π+β) |
63 | 61, 62 | syl 14 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β
-ππ
=
-π+β) |
64 | | xnegpnf 9828 |
. . . . . . . . . . . . . . . . . 18
β’
-π+β = -β |
65 | 63, 64 | eqtrdi 2226 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β
-ππ
=
-β) |
66 | 65 | oveq2d 5891 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (π +π
-ππ
) =
(π +π
-β)) |
67 | 66 | eqeq1d 2186 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β ((π +π
-ππ
) =
-β β (π
+π -β) = -β)) |
68 | 60, 67 | sylibrd 169 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (π β +β β (π +π
-ππ
) =
-β)) |
69 | 68 | a1d 22 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (DECID
π = +β β (π β +β β (π +π
-ππ
) =
-β))) |
70 | 69 | necon1ddc 2425 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (DECID
π = +β β ((π +π
-ππ
)
β -β β π =
+β))) |
71 | 49, 57, 70 | mp2d 47 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β π = +β) |
72 | 71, 65 | oveq12d 5893 |
. . . . . . . . . 10
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (π +π
-ππ
) =
(+β +π -β)) |
73 | | pnfaddmnf 9850 |
. . . . . . . . . 10
β’ (+β
+π -β) = 0 |
74 | 72, 73 | eqtrdi 2226 |
. . . . . . . . 9
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (π +π
-ππ
) =
0) |
75 | 46, 74 | breqtrd 4030 |
. . . . . . . 8
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (ππ·π) β€ 0) |
76 | 53 | biantrud 304 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β ((ππ·π) β€ 0 β ((ππ·π) β€ 0 β§ 0 β€ (ππ·π)))) |
77 | | xrletri3 9804 |
. . . . . . . . . . 11
β’ (((ππ·π) β β* β§ 0 β
β*) β ((ππ·π) = 0 β ((ππ·π) β€ 0 β§ 0 β€ (ππ·π)))) |
78 | 15, 50, 77 | sylancl 413 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β ((ππ·π) = 0 β ((ππ·π) β€ 0 β§ 0 β€ (ππ·π)))) |
79 | | xmeteq0 13862 |
. . . . . . . . . . 11
β’ ((π· β (βMetβπ) β§ π β π β§ π β π) β ((ππ·π) = 0 β π = π)) |
80 | 7, 21, 9, 79 | syl3anc 1238 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β ((ππ·π) = 0 β π = π)) |
81 | 76, 78, 80 | 3bitr2d 216 |
. . . . . . . . 9
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β ((ππ·π) β€ 0 β π = π)) |
82 | 81 | adantr 276 |
. . . . . . . 8
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β ((ππ·π) β€ 0 β π = π)) |
83 | 75, 82 | mpbid 147 |
. . . . . . 7
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β π = π) |
84 | 83 | oveq1d 5890 |
. . . . . 6
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (ππ·π₯) = (ππ·π₯)) |
85 | 61, 71 | eqtr4d 2213 |
. . . . . 6
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β π
= π) |
86 | 45, 84, 85 | 3brtr3d 4035 |
. . . . 5
β’ (((π β§ π₯ β (π(ballβπ·)π
)) β§ π
= +β) β (ππ·π₯) < π) |
87 | | xmetge0 13868 |
. . . . . . . . . . 11
β’ ((π· β (βMetβπ) β§ π β π β§ π₯ β π) β 0 β€ (ππ·π₯)) |
88 | 7, 21, 6, 87 | syl3anc 1238 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β 0 β€ (ππ·π₯)) |
89 | 51, 23, 16, 88, 27 | xrlelttrd 9810 |
. . . . . . . . 9
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β 0 < π
) |
90 | 51, 16, 89 | xrltled 9799 |
. . . . . . . 8
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β 0 β€ π
) |
91 | | ge0nemnf 9824 |
. . . . . . . 8
β’ ((π
β β*
β§ 0 β€ π
) β
π
β
-β) |
92 | 16, 90, 91 | syl2anc 411 |
. . . . . . 7
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β π
β -β) |
93 | 16, 92 | jca 306 |
. . . . . 6
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (π
β β* β§ π
β
-β)) |
94 | | xrnemnf 9777 |
. . . . . 6
β’ ((π
β β*
β§ π
β -β)
β (π
β β
β¨ π
=
+β)) |
95 | 93, 94 | sylib 122 |
. . . . 5
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (π
β β β¨ π
= +β)) |
96 | 44, 86, 95 | mpjaodan 798 |
. . . 4
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (ππ·π₯) < π) |
97 | | elbl 13894 |
. . . . 5
β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π₯ β (π(ballβπ·)π) β (π₯ β π β§ (ππ·π₯) < π))) |
98 | 7, 9, 33, 97 | syl3anc 1238 |
. . . 4
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β (π₯ β (π(ballβπ·)π) β (π₯ β π β§ (ππ·π₯) < π))) |
99 | 6, 96, 98 | mpbir2and 944 |
. . 3
β’ ((π β§ π₯ β (π(ballβπ·)π
)) β π₯ β (π(ballβπ·)π)) |
100 | 99 | ex 115 |
. 2
β’ (π β (π₯ β (π(ballβπ·)π
) β π₯ β (π(ballβπ·)π))) |
101 | 100 | ssrdv 3162 |
1
β’ (π β (π(ballβπ·)π
) β (π(ballβπ·)π)) |