ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xblss2 GIF version

Theorem xblss2 12574
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 12576 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
xblss2.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
xblss2.2 (𝜑𝑃𝑋)
xblss2.3 (𝜑𝑄𝑋)
xblss2.4 (𝜑𝑅 ∈ ℝ*)
xblss2.5 (𝜑𝑆 ∈ ℝ*)
xblss2.6 (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)
xblss2.7 (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
Assertion
Ref Expression
xblss2 (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))

Proof of Theorem xblss2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xblss2.1 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 xblss2.2 . . . . . 6 (𝜑𝑃𝑋)
3 xblss2.4 . . . . . 6 (𝜑𝑅 ∈ ℝ*)
4 elbl 12560 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
51, 2, 3, 4syl3anc 1216 . . . . 5 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
65simprbda 380 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥𝑋)
71adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
8 xblss2.3 . . . . . . . . 9 (𝜑𝑄𝑋)
98adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑄𝑋)
10 xmetcl 12521 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑥𝑋) → (𝑄𝐷𝑥) ∈ ℝ*)
117, 9, 6, 10syl3anc 1216 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) ∈ ℝ*)
1211adantr 274 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) ∈ ℝ*)
13 xblss2.6 . . . . . . . . . 10 (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)
1413adantr 274 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ∈ ℝ)
1514rexrd 7815 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ∈ ℝ*)
163adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑅 ∈ ℝ*)
1715, 16xaddcld 9667 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ∈ ℝ*)
1817adantr 274 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ∈ ℝ*)
19 xblss2.5 . . . . . . 7 (𝜑𝑆 ∈ ℝ*)
2019ad2antrr 479 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → 𝑆 ∈ ℝ*)
212adantr 274 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑃𝑋)
22 xmetcl 12521 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
237, 21, 6, 22syl3anc 1216 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) ∈ ℝ*)
2415, 23xaddcld 9667 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) ∈ ℝ*)
25 xmettri2 12530 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑃𝑋𝑄𝑋𝑥𝑋)) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)))
267, 21, 9, 6, 25syl13anc 1218 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)))
275simplbda 381 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) < 𝑅)
28 xltadd2 9660 . . . . . . . . . 10 (((𝑃𝐷𝑥) ∈ ℝ*𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑄) ∈ ℝ) → ((𝑃𝐷𝑥) < 𝑅 ↔ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅)))
2923, 16, 14, 28syl3anc 1216 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑥) < 𝑅 ↔ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅)))
3027, 29mpbid 146 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3111, 24, 17, 26, 30xrlelttrd 9593 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3231adantr 274 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3319adantr 274 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑆 ∈ ℝ*)
3416xnegcld 9638 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → -𝑒𝑅 ∈ ℝ*)
3533, 34xaddcld 9667 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑆 +𝑒 -𝑒𝑅) ∈ ℝ*)
36 xblss2.7 . . . . . . . . . 10 (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
3736adantr 274 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
38 xleadd1a 9656 . . . . . . . . 9 ((((𝑃𝐷𝑄) ∈ ℝ* ∧ (𝑆 +𝑒 -𝑒𝑅) ∈ ℝ*𝑅 ∈ ℝ*) ∧ (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
3915, 35, 16, 37, 38syl31anc 1219 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
4039adantr 274 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
41 xnpcan 9655 . . . . . . . 8 ((𝑆 ∈ ℝ*𝑅 ∈ ℝ) → ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅) = 𝑆)
4233, 41sylan 281 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅) = 𝑆)
4340, 42breqtrd 3954 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ 𝑆)
4412, 18, 20, 32, 43xrltletrd 9594 . . . . 5 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) < 𝑆)
4527adantr 274 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑥) < 𝑅)
4636ad2antrr 479 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
4719ad2antrr 479 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑆 ∈ ℝ*)
48 xrpnfdc 9625 . . . . . . . . . . . . 13 (𝑆 ∈ ℝ*DECID 𝑆 = +∞)
4947, 48syl 14 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → DECID 𝑆 = +∞)
50 0xr 7812 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
5150a1i 9 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ∈ ℝ*)
52 xmetge0 12534 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → 0 ≤ (𝑃𝐷𝑄))
537, 21, 9, 52syl3anc 1216 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑃𝐷𝑄))
5451, 15, 35, 53, 37xrletrd 9595 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑆 +𝑒 -𝑒𝑅))
55 ge0nemnf 9607 . . . . . . . . . . . . . 14 (((𝑆 +𝑒 -𝑒𝑅) ∈ ℝ* ∧ 0 ≤ (𝑆 +𝑒 -𝑒𝑅)) → (𝑆 +𝑒 -𝑒𝑅) ≠ -∞)
5635, 54, 55syl2anc 408 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑆 +𝑒 -𝑒𝑅) ≠ -∞)
5756adantr 274 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒 -𝑒𝑅) ≠ -∞)
58 xaddmnf1 9631 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ*𝑆 ≠ +∞) → (𝑆 +𝑒 -∞) = -∞)
5958ex 114 . . . . . . . . . . . . . . . 16 (𝑆 ∈ ℝ* → (𝑆 ≠ +∞ → (𝑆 +𝑒 -∞) = -∞))
6047, 59syl 14 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 ≠ +∞ → (𝑆 +𝑒 -∞) = -∞))
61 simpr 109 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑅 = +∞)
62 xnegeq 9610 . . . . . . . . . . . . . . . . . . 19 (𝑅 = +∞ → -𝑒𝑅 = -𝑒+∞)
6361, 62syl 14 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → -𝑒𝑅 = -𝑒+∞)
64 xnegpnf 9611 . . . . . . . . . . . . . . . . . 18 -𝑒+∞ = -∞
6563, 64syl6eq 2188 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → -𝑒𝑅 = -∞)
6665oveq2d 5790 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒 -𝑒𝑅) = (𝑆 +𝑒 -∞))
6766eqeq1d 2148 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑆 +𝑒 -𝑒𝑅) = -∞ ↔ (𝑆 +𝑒 -∞) = -∞))
6860, 67sylibrd 168 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 ≠ +∞ → (𝑆 +𝑒 -𝑒𝑅) = -∞))
6968a1d 22 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (DECID 𝑆 = +∞ → (𝑆 ≠ +∞ → (𝑆 +𝑒 -𝑒𝑅) = -∞)))
7069necon1ddc 2386 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (DECID 𝑆 = +∞ → ((𝑆 +𝑒 -𝑒𝑅) ≠ -∞ → 𝑆 = +∞)))
7149, 57, 70mp2d 47 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑆 = +∞)
7271, 65oveq12d 5792 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒 -𝑒𝑅) = (+∞ +𝑒 -∞))
73 pnfaddmnf 9633 . . . . . . . . . 10 (+∞ +𝑒 -∞) = 0
7472, 73syl6eq 2188 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒 -𝑒𝑅) = 0)
7546, 74breqtrd 3954 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑄) ≤ 0)
7653biantrud 302 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) ≤ 0 ↔ ((𝑃𝐷𝑄) ≤ 0 ∧ 0 ≤ (𝑃𝐷𝑄))))
77 xrletri3 9588 . . . . . . . . . . 11 (((𝑃𝐷𝑄) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑃𝐷𝑄) = 0 ↔ ((𝑃𝐷𝑄) ≤ 0 ∧ 0 ≤ (𝑃𝐷𝑄))))
7815, 50, 77sylancl 409 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) = 0 ↔ ((𝑃𝐷𝑄) ≤ 0 ∧ 0 ≤ (𝑃𝐷𝑄))))
79 xmeteq0 12528 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → ((𝑃𝐷𝑄) = 0 ↔ 𝑃 = 𝑄))
807, 21, 9, 79syl3anc 1216 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) = 0 ↔ 𝑃 = 𝑄))
8176, 78, 803bitr2d 215 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) ≤ 0 ↔ 𝑃 = 𝑄))
8281adantr 274 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑃𝐷𝑄) ≤ 0 ↔ 𝑃 = 𝑄))
8375, 82mpbid 146 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑃 = 𝑄)
8483oveq1d 5789 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑥) = (𝑄𝐷𝑥))
8561, 71eqtr4d 2175 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑅 = 𝑆)
8645, 84, 853brtr3d 3959 . . . . 5 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) < 𝑆)
87 xmetge0 12534 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
887, 21, 6, 87syl3anc 1216 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑃𝐷𝑥))
8951, 23, 16, 88, 27xrlelttrd 9593 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅)
9051, 16, 89xrltled 9585 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ 𝑅)
91 ge0nemnf 9607 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → 𝑅 ≠ -∞)
9216, 90, 91syl2anc 408 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑅 ≠ -∞)
9316, 92jca 304 . . . . . 6 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑅 ∈ ℝ*𝑅 ≠ -∞))
94 xrnemnf 9564 . . . . . 6 ((𝑅 ∈ ℝ*𝑅 ≠ -∞) ↔ (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
9593, 94sylib 121 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
9644, 86, 95mpjaodan 787 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) < 𝑆)
97 elbl 12560 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
987, 9, 33, 97syl3anc 1216 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
996, 96, 98mpbir2and 928 . . 3 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ (𝑄(ball‘𝐷)𝑆))
10099ex 114 . 2 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)))
101100ssrdv 3103 1 (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308  wss 3071   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620  +∞cpnf 7797  -∞cmnf 7798  *cxr 7799   < clt 7800  cle 7801  -𝑒cxne 9556   +𝑒 cxad 9557  ∞Metcxmet 12149  ballcbl 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-2 8779  df-xneg 9559  df-xadd 9560  df-psmet 12156  df-xmet 12157  df-bl 12159
This theorem is referenced by:  blss2  12576  ssbl  12595
  Copyright terms: Public domain W3C validator