| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > necon3bid | GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) | 
| Ref | Expression | 
|---|---|
| necon3bid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | 
| Ref | Expression | 
|---|---|
| necon3bid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3bid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | |
| 3 | 2 | necon3bbid 2407 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ 𝐶 ≠ 𝐷)) | 
| 4 | 1, 3 | bitrid 192 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2367 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-ne 2368 | 
| This theorem is referenced by: nebidc 2447 addneintrd 8214 addneintr2d 8215 negne0bd 8330 negned 8334 subne0d 8346 subne0ad 8348 subneintrd 8381 subneintr2d 8383 qapne 9713 xrlttri3 9872 xaddass2 9945 seqf1oglem1 10611 sqne0 10697 fihashneq0 10886 hashnncl 10887 cjne0 11073 absne0d 11352 sqrt2irraplemnn 12347 4sqlem11 12570 ringinvnz1ne0 13605 metn0 14614 perfectlem2 15236 lgsabs1 15280 neap0mkv 15713 | 
| Copyright terms: Public domain | W3C validator |