ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bid GIF version

Theorem necon3bid 2441
Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon3bid.1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon3bid (𝜑 → (𝐴𝐵𝐶𝐷))

Proof of Theorem necon3bid
StepHypRef Expression
1 df-ne 2401 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3bid.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
32necon3bbid 2440 . 2 (𝜑 → (¬ 𝐴 = 𝐵𝐶𝐷))
41, 3bitrid 192 1 (𝜑 → (𝐴𝐵𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1395  wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618
This theorem depends on definitions:  df-bi 117  df-ne 2401
This theorem is referenced by:  nebidc  2480  addneintrd  8330  addneintr2d  8331  negne0bd  8446  negned  8450  subne0d  8462  subne0ad  8464  subneintrd  8497  subneintr2d  8499  qapne  9830  xrlttri3  9989  xaddass2  10062  seqf1oglem1  10736  sqne0  10822  fihashneq0  11011  hashnncl  11012  ccat1st1st  11167  pfxn0  11215  cjne0  11414  absne0d  11693  sqrt2irraplemnn  12696  4sqlem11  12919  ringinvnz1ne0  14007  metn0  15046  perfectlem2  15668  lgsabs1  15712  neap0mkv  16396
  Copyright terms: Public domain W3C validator