ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bid GIF version

Theorem necon3bid 2408
Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon3bid.1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon3bid (𝜑 → (𝐴𝐵𝐶𝐷))

Proof of Theorem necon3bid
StepHypRef Expression
1 df-ne 2368 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3bid.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
32necon3bbid 2407 . 2 (𝜑 → (¬ 𝐴 = 𝐵𝐶𝐷))
41, 3bitrid 192 1 (𝜑 → (𝐴𝐵𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1364  wne 2367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2368
This theorem is referenced by:  nebidc  2447  addneintrd  8233  addneintr2d  8234  negne0bd  8349  negned  8353  subne0d  8365  subne0ad  8367  subneintrd  8400  subneintr2d  8402  qapne  9732  xrlttri3  9891  xaddass2  9964  seqf1oglem1  10630  sqne0  10716  fihashneq0  10905  hashnncl  10906  cjne0  11092  absne0d  11371  sqrt2irraplemnn  12374  4sqlem11  12597  ringinvnz1ne0  13683  metn0  14722  perfectlem2  15344  lgsabs1  15388  neap0mkv  15826
  Copyright terms: Public domain W3C validator