ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bid GIF version

Theorem necon3bid 2416
Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon3bid.1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon3bid (𝜑 → (𝐴𝐵𝐶𝐷))

Proof of Theorem necon3bid
StepHypRef Expression
1 df-ne 2376 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3bid.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
32necon3bbid 2415 . 2 (𝜑 → (¬ 𝐴 = 𝐵𝐶𝐷))
41, 3bitrid 192 1 (𝜑 → (𝐴𝐵𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1372  wne 2375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2376
This theorem is referenced by:  nebidc  2455  addneintrd  8259  addneintr2d  8260  negne0bd  8375  negned  8379  subne0d  8391  subne0ad  8393  subneintrd  8426  subneintr2d  8428  qapne  9759  xrlttri3  9918  xaddass2  9991  seqf1oglem1  10662  sqne0  10748  fihashneq0  10937  hashnncl  10938  ccat1st1st  11091  cjne0  11190  absne0d  11469  sqrt2irraplemnn  12472  4sqlem11  12695  ringinvnz1ne0  13782  metn0  14821  perfectlem2  15443  lgsabs1  15487  neap0mkv  15970
  Copyright terms: Public domain W3C validator