![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necon3bid | GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
necon3bid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2257 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3bid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | |
3 | 2 | necon3bbid 2296 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ 𝐶 ≠ 𝐷)) |
4 | 1, 3 | syl5bb 191 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 = wceq 1290 ≠ wne 2256 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 |
This theorem depends on definitions: df-bi 116 df-ne 2257 |
This theorem is referenced by: nebidc 2336 addneintrd 7733 addneintr2d 7734 negne0bd 7849 negned 7853 subne0d 7865 subne0ad 7867 subneintrd 7900 subneintr2d 7902 qapne 9187 xrlttri3 9330 sqne0 10083 fihashneq0 10266 hashnncl 10267 cjne0 10405 absne0d 10683 sqrt2irraplemnn 11498 |
Copyright terms: Public domain | W3C validator |