| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3bid | GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon3bid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2377 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3bid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | |
| 3 | 2 | necon3bbid 2416 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| 4 | 1, 3 | bitrid 192 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1373 ≠ wne 2376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2377 |
| This theorem is referenced by: nebidc 2456 addneintrd 8260 addneintr2d 8261 negne0bd 8376 negned 8380 subne0d 8392 subne0ad 8394 subneintrd 8427 subneintr2d 8429 qapne 9760 xrlttri3 9919 xaddass2 9992 seqf1oglem1 10664 sqne0 10750 fihashneq0 10939 hashnncl 10940 ccat1st1st 11093 cjne0 11219 absne0d 11498 sqrt2irraplemnn 12501 4sqlem11 12724 ringinvnz1ne0 13811 metn0 14850 perfectlem2 15472 lgsabs1 15516 neap0mkv 16008 |
| Copyright terms: Public domain | W3C validator |