ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bid GIF version

Theorem necon3bid 2377
Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon3bid.1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon3bid (𝜑 → (𝐴𝐵𝐶𝐷))

Proof of Theorem necon3bid
StepHypRef Expression
1 df-ne 2337 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3bid.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
32necon3bbid 2376 . 2 (𝜑 → (¬ 𝐴 = 𝐵𝐶𝐷))
41, 3syl5bb 191 1 (𝜑 → (𝐴𝐵𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104   = wceq 1343  wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-ne 2337
This theorem is referenced by:  nebidc  2416  addneintrd  8086  addneintr2d  8087  negne0bd  8202  negned  8206  subne0d  8218  subne0ad  8220  subneintrd  8253  subneintr2d  8255  qapne  9577  xrlttri3  9733  xaddass2  9806  sqne0  10520  fihashneq0  10708  hashnncl  10709  cjne0  10850  absne0d  11129  sqrt2irraplemnn  12111  metn0  13028  lgsabs1  13590
  Copyright terms: Public domain W3C validator