| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3bid | GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon3bid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2376 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3bid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | |
| 3 | 2 | necon3bbid 2415 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| 4 | 1, 3 | bitrid 192 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1372 ≠ wne 2375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2376 |
| This theorem is referenced by: nebidc 2455 addneintrd 8259 addneintr2d 8260 negne0bd 8375 negned 8379 subne0d 8391 subne0ad 8393 subneintrd 8426 subneintr2d 8428 qapne 9759 xrlttri3 9918 xaddass2 9991 seqf1oglem1 10662 sqne0 10748 fihashneq0 10937 hashnncl 10938 ccat1st1st 11091 cjne0 11190 absne0d 11469 sqrt2irraplemnn 12472 4sqlem11 12695 ringinvnz1ne0 13782 metn0 14821 perfectlem2 15443 lgsabs1 15487 neap0mkv 15970 |
| Copyright terms: Public domain | W3C validator |