| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3bid | GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon3bid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3bid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | |
| 3 | 2 | necon3bbid 2407 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| 4 | 1, 3 | bitrid 192 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: nebidc 2447 addneintrd 8233 addneintr2d 8234 negne0bd 8349 negned 8353 subne0d 8365 subne0ad 8367 subneintrd 8400 subneintr2d 8402 qapne 9732 xrlttri3 9891 xaddass2 9964 seqf1oglem1 10630 sqne0 10716 fihashneq0 10905 hashnncl 10906 cjne0 11092 absne0d 11371 sqrt2irraplemnn 12374 4sqlem11 12597 ringinvnz1ne0 13683 metn0 14722 perfectlem2 15344 lgsabs1 15388 neap0mkv 15826 |
| Copyright terms: Public domain | W3C validator |