ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bid GIF version

Theorem necon3bid 2297
Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon3bid.1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon3bid (𝜑 → (𝐴𝐵𝐶𝐷))

Proof of Theorem necon3bid
StepHypRef Expression
1 df-ne 2257 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3bid.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
32necon3bbid 2296 . 2 (𝜑 → (¬ 𝐴 = 𝐵𝐶𝐷))
41, 3syl5bb 191 1 (𝜑 → (𝐴𝐵𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104   = wceq 1290  wne 2256
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581
This theorem depends on definitions:  df-bi 116  df-ne 2257
This theorem is referenced by:  nebidc  2336  addneintrd  7733  addneintr2d  7734  negne0bd  7849  negned  7853  subne0d  7865  subne0ad  7867  subneintrd  7900  subneintr2d  7902  qapne  9187  xrlttri3  9330  sqne0  10083  fihashneq0  10266  hashnncl  10267  cjne0  10405  absne0d  10683  sqrt2irraplemnn  11498
  Copyright terms: Public domain W3C validator