ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bid GIF version

Theorem necon3bid 2408
Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon3bid.1 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon3bid (𝜑 → (𝐴𝐵𝐶𝐷))

Proof of Theorem necon3bid
StepHypRef Expression
1 df-ne 2368 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon3bid.1 . . 3 (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
32necon3bbid 2407 . 2 (𝜑 → (¬ 𝐴 = 𝐵𝐶𝐷))
41, 3bitrid 192 1 (𝜑 → (𝐴𝐵𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1364  wne 2367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2368
This theorem is referenced by:  nebidc  2447  addneintrd  8214  addneintr2d  8215  negne0bd  8330  negned  8334  subne0d  8346  subne0ad  8348  subneintrd  8381  subneintr2d  8383  qapne  9713  xrlttri3  9872  xaddass2  9945  seqf1oglem1  10611  sqne0  10697  fihashneq0  10886  hashnncl  10887  cjne0  11073  absne0d  11352  sqrt2irraplemnn  12347  4sqlem11  12570  ringinvnz1ne0  13605  metn0  14614  perfectlem2  15236  lgsabs1  15280  neap0mkv  15713
  Copyright terms: Public domain W3C validator