| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3bid | GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon3bid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2401 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3bid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | |
| 3 | 2 | necon3bbid 2440 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| 4 | 1, 3 | bitrid 192 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: nebidc 2480 addneintrd 8330 addneintr2d 8331 negne0bd 8446 negned 8450 subne0d 8462 subne0ad 8464 subneintrd 8497 subneintr2d 8499 qapne 9830 xrlttri3 9989 xaddass2 10062 seqf1oglem1 10736 sqne0 10822 fihashneq0 11011 hashnncl 11012 ccat1st1st 11167 pfxn0 11215 cjne0 11414 absne0d 11693 sqrt2irraplemnn 12696 4sqlem11 12919 ringinvnz1ne0 14007 metn0 15046 perfectlem2 15668 lgsabs1 15712 neap0mkv 16396 |
| Copyright terms: Public domain | W3C validator |