ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem7 GIF version

Theorem 2sqlem7 15713
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
Assertion
Ref Expression
2sqlem7 𝑌 ⊆ (𝑆 ∩ ℕ)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑆(𝑤)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem7
StepHypRef Expression
1 2sqlem7.2 . 2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2 simpr 110 . . . . . . 7 (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧 = ((𝑥↑2) + (𝑦↑2)))
32reximi 2605 . . . . . 6 (∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑦 ∈ ℤ 𝑧 = ((𝑥↑2) + (𝑦↑2)))
43reximi 2605 . . . . 5 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝑥↑2) + (𝑦↑2)))
5 2sq.1 . . . . . 6 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
652sqlem2 15707 . . . . 5 (𝑧𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝑥↑2) + (𝑦↑2)))
74, 6sylibr 134 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧𝑆)
8 1ne0 9139 . . . . . . . . . 10 1 ≠ 0
9 gcdeq0 12413 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
109adantr 276 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥 gcd 𝑦) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
11 simpr 110 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑥 gcd 𝑦) = 1)
1211eqeq1d 2216 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥 gcd 𝑦) = 0 ↔ 1 = 0))
1310, 12bitr3d 190 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥 = 0 ∧ 𝑦 = 0) ↔ 1 = 0))
1413necon3bbid 2418 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (¬ (𝑥 = 0 ∧ 𝑦 = 0) ↔ 1 ≠ 0))
158, 14mpbiri 168 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ¬ (𝑥 = 0 ∧ 𝑦 = 0))
16 zsqcl2 10799 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
1716ad2antrr 488 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑥↑2) ∈ ℕ0)
1817nn0red 9384 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑥↑2) ∈ ℝ)
1917nn0ge0d 9386 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → 0 ≤ (𝑥↑2))
20 zsqcl2 10799 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0)
2120ad2antlr 489 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑦↑2) ∈ ℕ0)
2221nn0red 9384 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑦↑2) ∈ ℝ)
2321nn0ge0d 9386 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → 0 ≤ (𝑦↑2))
24 add20 8582 . . . . . . . . . . 11 ((((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)) ∧ ((𝑦↑2) ∈ ℝ ∧ 0 ≤ (𝑦↑2))) → (((𝑥↑2) + (𝑦↑2)) = 0 ↔ ((𝑥↑2) = 0 ∧ (𝑦↑2) = 0)))
2518, 19, 22, 23, 24syl22anc 1251 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (((𝑥↑2) + (𝑦↑2)) = 0 ↔ ((𝑥↑2) = 0 ∧ (𝑦↑2) = 0)))
26 zcn 9412 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2726ad2antrr 488 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → 𝑥 ∈ ℂ)
28 zcn 9412 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
2928ad2antlr 489 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → 𝑦 ∈ ℂ)
30 sqeq0 10784 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ((𝑥↑2) = 0 ↔ 𝑥 = 0))
31 sqeq0 10784 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑦↑2) = 0 ↔ 𝑦 = 0))
3230, 31bi2anan9 606 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥↑2) = 0 ∧ (𝑦↑2) = 0) ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
3327, 29, 32syl2anc 411 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (((𝑥↑2) = 0 ∧ (𝑦↑2) = 0) ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
3425, 33bitrd 188 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (((𝑥↑2) + (𝑦↑2)) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
3515, 34mtbird 675 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ¬ ((𝑥↑2) + (𝑦↑2)) = 0)
36 nn0addcl 9365 . . . . . . . . . . 11 (((𝑥↑2) ∈ ℕ0 ∧ (𝑦↑2) ∈ ℕ0) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
3716, 20, 36syl2an 289 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
3837adantr 276 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
39 elnn0 9332 . . . . . . . . 9 (((𝑥↑2) + (𝑦↑2)) ∈ ℕ0 ↔ (((𝑥↑2) + (𝑦↑2)) ∈ ℕ ∨ ((𝑥↑2) + (𝑦↑2)) = 0))
4038, 39sylib 122 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (((𝑥↑2) + (𝑦↑2)) ∈ ℕ ∨ ((𝑥↑2) + (𝑦↑2)) = 0))
4135, 40ecased 1362 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ)
42 eleq1 2270 . . . . . . 7 (𝑧 = ((𝑥↑2) + (𝑦↑2)) → (𝑧 ∈ ℕ ↔ ((𝑥↑2) + (𝑦↑2)) ∈ ℕ))
4341, 42syl5ibrcom 157 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑧 = ((𝑥↑2) + (𝑦↑2)) → 𝑧 ∈ ℕ))
4443expimpd 363 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧 ∈ ℕ))
4544rexlimivv 2631 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧 ∈ ℕ)
467, 45elind 3366 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧 ∈ (𝑆 ∩ ℕ))
4746abssi 3276 . 2 {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⊆ (𝑆 ∩ ℕ)
481, 47eqsstri 3233 1 𝑌 ⊆ (𝑆 ∩ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 710   = wceq 1373  wcel 2178  {cab 2193  wne 2378  wrex 2487  cin 3173  wss 3174   class class class wbr 4059  cmpt 4121  ran crn 4694  cfv 5290  (class class class)co 5967  cc 7958  cr 7959  0cc0 7960  1c1 7961   + caddc 7963  cle 8143  cn 9071  2c2 9122  0cn0 9330  cz 9407  cexp 10720  abscabs 11423   gcd cgcd 12389  ℤ[i]cgz 12807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-gz 12808
This theorem is referenced by:  2sqlem8  15715  2sqlem9  15716
  Copyright terms: Public domain W3C validator