ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem7 GIF version

Theorem 2sqlem7 13751
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
Assertion
Ref Expression
2sqlem7 𝑌 ⊆ (𝑆 ∩ ℕ)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑆(𝑤)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem7
StepHypRef Expression
1 2sqlem7.2 . 2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2 simpr 109 . . . . . . 7 (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧 = ((𝑥↑2) + (𝑦↑2)))
32reximi 2567 . . . . . 6 (∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑦 ∈ ℤ 𝑧 = ((𝑥↑2) + (𝑦↑2)))
43reximi 2567 . . . . 5 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝑥↑2) + (𝑦↑2)))
5 2sq.1 . . . . . 6 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
652sqlem2 13745 . . . . 5 (𝑧𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝑥↑2) + (𝑦↑2)))
74, 6sylibr 133 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧𝑆)
8 1ne0 8946 . . . . . . . . . 10 1 ≠ 0
9 gcdeq0 11932 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
109adantr 274 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥 gcd 𝑦) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
11 simpr 109 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑥 gcd 𝑦) = 1)
1211eqeq1d 2179 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥 gcd 𝑦) = 0 ↔ 1 = 0))
1310, 12bitr3d 189 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥 = 0 ∧ 𝑦 = 0) ↔ 1 = 0))
1413necon3bbid 2380 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (¬ (𝑥 = 0 ∧ 𝑦 = 0) ↔ 1 ≠ 0))
158, 14mpbiri 167 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ¬ (𝑥 = 0 ∧ 𝑦 = 0))
16 zsqcl2 10553 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
1716ad2antrr 485 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑥↑2) ∈ ℕ0)
1817nn0red 9189 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑥↑2) ∈ ℝ)
1917nn0ge0d 9191 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → 0 ≤ (𝑥↑2))
20 zsqcl2 10553 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0)
2120ad2antlr 486 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑦↑2) ∈ ℕ0)
2221nn0red 9189 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑦↑2) ∈ ℝ)
2321nn0ge0d 9191 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → 0 ≤ (𝑦↑2))
24 add20 8393 . . . . . . . . . . 11 ((((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)) ∧ ((𝑦↑2) ∈ ℝ ∧ 0 ≤ (𝑦↑2))) → (((𝑥↑2) + (𝑦↑2)) = 0 ↔ ((𝑥↑2) = 0 ∧ (𝑦↑2) = 0)))
2518, 19, 22, 23, 24syl22anc 1234 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (((𝑥↑2) + (𝑦↑2)) = 0 ↔ ((𝑥↑2) = 0 ∧ (𝑦↑2) = 0)))
26 zcn 9217 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2726ad2antrr 485 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → 𝑥 ∈ ℂ)
28 zcn 9217 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
2928ad2antlr 486 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → 𝑦 ∈ ℂ)
30 sqeq0 10539 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ((𝑥↑2) = 0 ↔ 𝑥 = 0))
31 sqeq0 10539 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑦↑2) = 0 ↔ 𝑦 = 0))
3230, 31bi2anan9 601 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝑥↑2) = 0 ∧ (𝑦↑2) = 0) ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
3327, 29, 32syl2anc 409 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (((𝑥↑2) = 0 ∧ (𝑦↑2) = 0) ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
3425, 33bitrd 187 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (((𝑥↑2) + (𝑦↑2)) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
3515, 34mtbird 668 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ¬ ((𝑥↑2) + (𝑦↑2)) = 0)
36 nn0addcl 9170 . . . . . . . . . . 11 (((𝑥↑2) ∈ ℕ0 ∧ (𝑦↑2) ∈ ℕ0) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
3716, 20, 36syl2an 287 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
3837adantr 274 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
39 elnn0 9137 . . . . . . . . 9 (((𝑥↑2) + (𝑦↑2)) ∈ ℕ0 ↔ (((𝑥↑2) + (𝑦↑2)) ∈ ℕ ∨ ((𝑥↑2) + (𝑦↑2)) = 0))
4038, 39sylib 121 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (((𝑥↑2) + (𝑦↑2)) ∈ ℕ ∨ ((𝑥↑2) + (𝑦↑2)) = 0))
4135, 40ecased 1344 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ)
42 eleq1 2233 . . . . . . 7 (𝑧 = ((𝑥↑2) + (𝑦↑2)) → (𝑧 ∈ ℕ ↔ ((𝑥↑2) + (𝑦↑2)) ∈ ℕ))
4341, 42syl5ibrcom 156 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 gcd 𝑦) = 1) → (𝑧 = ((𝑥↑2) + (𝑦↑2)) → 𝑧 ∈ ℕ))
4443expimpd 361 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧 ∈ ℕ))
4544rexlimivv 2593 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧 ∈ ℕ)
467, 45elind 3312 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) → 𝑧 ∈ (𝑆 ∩ ℕ))
4746abssi 3222 . 2 {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⊆ (𝑆 ∩ ℕ)
481, 47eqsstri 3179 1 𝑌 ⊆ (𝑆 ∩ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  {cab 2156  wne 2340  wrex 2449  cin 3120  wss 3121   class class class wbr 3989  cmpt 4050  ran crn 4612  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777  cle 7955  cn 8878  2c2 8929  0cn0 9135  cz 9212  cexp 10475  abscabs 10961   gcd cgcd 11897  ℤ[i]cgz 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-gz 12322
This theorem is referenced by:  2sqlem8  13753  2sqlem9  13754
  Copyright terms: Public domain W3C validator