| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nzrunit | GIF version | ||
| Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| Ref | Expression |
|---|---|
| nzrunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| nzrunit.2 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| nzrunit | ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 2 | nzrunit.2 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | nzrnz 13748 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
| 4 | nzrring 13749 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 5 | nzrunit.1 | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
| 6 | 5, 2, 1 | 0unit 13695 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ (1r‘𝑅) = 0 )) |
| 7 | 6 | necon3bbid 2407 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ 𝑈 ↔ (1r‘𝑅) ≠ 0 )) |
| 8 | 4, 7 | syl 14 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (¬ 0 ∈ 𝑈 ↔ (1r‘𝑅) ≠ 0 )) |
| 9 | 3, 8 | mpbird 167 | . . . 4 ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝑈) |
| 10 | eleq1 2259 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝑈 ↔ 0 ∈ 𝑈)) | |
| 11 | 10 | notbid 668 | . . . 4 ⊢ (𝐴 = 0 → (¬ 𝐴 ∈ 𝑈 ↔ ¬ 0 ∈ 𝑈)) |
| 12 | 9, 11 | syl5ibrcom 157 | . . 3 ⊢ (𝑅 ∈ NzRing → (𝐴 = 0 → ¬ 𝐴 ∈ 𝑈)) |
| 13 | 12 | necon2ad 2424 | . 2 ⊢ (𝑅 ∈ NzRing → (𝐴 ∈ 𝑈 → 𝐴 ≠ 0 )) |
| 14 | 13 | imp 124 | 1 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ 0 ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ‘cfv 5259 0gc0g 12937 1rcur 13525 Ringcrg 13562 Unitcui 13653 NzRingcnzr 13745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-pre-ltirr 7993 ax-pre-lttrn 7995 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-tpos 6304 df-pnf 8065 df-mnf 8066 df-ltxr 8068 df-inn 8993 df-2 9051 df-3 9052 df-ndx 12691 df-slot 12692 df-base 12694 df-sets 12695 df-iress 12696 df-plusg 12778 df-mulr 12779 df-0g 12939 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-grp 13145 df-minusg 13146 df-cmn 13426 df-abl 13427 df-mgp 13487 df-ur 13526 df-srg 13530 df-ring 13564 df-oppr 13634 df-dvdsr 13655 df-unit 13656 df-invr 13687 df-nzr 13746 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |