| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nzrunit | GIF version | ||
| Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| Ref | Expression |
|---|---|
| nzrunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| nzrunit.2 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| nzrunit | ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 2 | nzrunit.2 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | nzrnz 14019 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
| 4 | nzrring 14020 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 5 | nzrunit.1 | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
| 6 | 5, 2, 1 | 0unit 13966 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ (1r‘𝑅) = 0 )) |
| 7 | 6 | necon3bbid 2417 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ 𝑈 ↔ (1r‘𝑅) ≠ 0 )) |
| 8 | 4, 7 | syl 14 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (¬ 0 ∈ 𝑈 ↔ (1r‘𝑅) ≠ 0 )) |
| 9 | 3, 8 | mpbird 167 | . . . 4 ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝑈) |
| 10 | eleq1 2269 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝑈 ↔ 0 ∈ 𝑈)) | |
| 11 | 10 | notbid 669 | . . . 4 ⊢ (𝐴 = 0 → (¬ 𝐴 ∈ 𝑈 ↔ ¬ 0 ∈ 𝑈)) |
| 12 | 9, 11 | syl5ibrcom 157 | . . 3 ⊢ (𝑅 ∈ NzRing → (𝐴 = 0 → ¬ 𝐴 ∈ 𝑈)) |
| 13 | 12 | necon2ad 2434 | . 2 ⊢ (𝑅 ∈ NzRing → (𝐴 ∈ 𝑈 → 𝐴 ≠ 0 )) |
| 14 | 13 | imp 124 | 1 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ 0 ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ‘cfv 5280 0gc0g 13163 1rcur 13796 Ringcrg 13833 Unitcui 13924 NzRingcnzr 14016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-tpos 6344 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-cmn 13697 df-abl 13698 df-mgp 13758 df-ur 13797 df-srg 13801 df-ring 13835 df-oppr 13905 df-dvdsr 13926 df-unit 13927 df-invr 13958 df-nzr 14017 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |