![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nzrunit | GIF version |
Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
nzrunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
nzrunit.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
nzrunit | ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | nzrunit.2 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | nzrnz 13332 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
4 | nzrring 13333 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
5 | nzrunit.1 | . . . . . . . 8 ⊢ 𝑈 = (Unit‘𝑅) | |
6 | 5, 2, 1 | 0unit 13304 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ (1r‘𝑅) = 0 )) |
7 | 6 | necon3bbid 2387 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ 𝑈 ↔ (1r‘𝑅) ≠ 0 )) |
8 | 4, 7 | syl 14 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (¬ 0 ∈ 𝑈 ↔ (1r‘𝑅) ≠ 0 )) |
9 | 3, 8 | mpbird 167 | . . . 4 ⊢ (𝑅 ∈ NzRing → ¬ 0 ∈ 𝑈) |
10 | eleq1 2240 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝑈 ↔ 0 ∈ 𝑈)) | |
11 | 10 | notbid 667 | . . . 4 ⊢ (𝐴 = 0 → (¬ 𝐴 ∈ 𝑈 ↔ ¬ 0 ∈ 𝑈)) |
12 | 9, 11 | syl5ibrcom 157 | . . 3 ⊢ (𝑅 ∈ NzRing → (𝐴 = 0 → ¬ 𝐴 ∈ 𝑈)) |
13 | 12 | necon2ad 2404 | . 2 ⊢ (𝑅 ∈ NzRing → (𝐴 ∈ 𝑈 → 𝐴 ≠ 0 )) |
14 | 13 | imp 124 | 1 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ 0 ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 ‘cfv 5218 0gc0g 12711 1rcur 13148 Ringcrg 13185 Unitcui 13262 NzRingcnzr 13329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltirr 7926 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-tpos 6249 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-inn 8923 df-2 8981 df-3 8982 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-iress 12473 df-plusg 12552 df-mulr 12553 df-0g 12713 df-mgm 12781 df-sgrp 12814 df-mnd 12824 df-grp 12886 df-minusg 12887 df-cmn 13096 df-abl 13097 df-mgp 13137 df-ur 13149 df-srg 13153 df-ring 13187 df-oppr 13246 df-dvdsr 13264 df-unit 13265 df-invr 13296 df-nzr 13330 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |