| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifsn | GIF version | ||
| Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| eldifsn | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3183 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶})) | |
| 2 | elsng 3658 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶)) | |
| 3 | 2 | necon3bbid 2418 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶} ↔ 𝐴 ≠ 𝐶)) |
| 4 | 3 | pm5.32i 454 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2178 ≠ wne 2378 ∖ cdif 3171 {csn 3643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-v 2778 df-dif 3176 df-sn 3649 |
| This theorem is referenced by: eldifsni 3773 rexdifsn 3776 difsn 3781 fnniniseg2 5726 rexsupp 5727 mpodifsnif 6061 suppssfv 6177 suppssov1 6178 dif1o 6547 fidifsnen 6993 en2eleq 7334 en2other2 7335 elni 7456 divvalap 8782 elnnne0 9344 divfnzn 9777 modfzo0difsn 10577 modsumfzodifsn 10578 hashdifpr 11002 eff2 12106 tanvalap 12134 fzo0dvdseq 12283 oddprmgt2 12571 oddprmdvds 12792 4sqlem19 12847 setsslnid 12999 grpinvnzcl 13519 lssneln0 14251 rplogbval 15532 lgsfcl2 15598 lgsval2lem 15602 lgsval3 15610 lgsmod 15618 lgsdirprm 15626 lgsne0 15630 gausslemma2dlem0f 15646 lgsquad2lem2 15674 2lgsoddprm 15705 |
| Copyright terms: Public domain | W3C validator |