ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifsn GIF version

Theorem eldifsn 3562
Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
eldifsn (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))

Proof of Theorem eldifsn
StepHypRef Expression
1 eldif 3006 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶}))
2 elsng 3456 . . . 4 (𝐴𝐵 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶))
32necon3bbid 2295 . . 3 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶} ↔ 𝐴𝐶))
43pm5.32i 442 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))
51, 4bitri 182 1 (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wb 103  wcel 1438  wne 2255  cdif 2994  {csn 3441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-v 2621  df-dif 2999  df-sn 3447
This theorem is referenced by:  eldifsni  3564  rexdifsn  3567  difsn  3569  fnniniseg2  5406  rexsupp  5407  suppssfv  5834  suppssov1  5835  dif1o  6184  fidifsnen  6566  en2eleq  6800  en2other2  6801  elni  6846  divvalap  8115  elnnne0  8657  divfnzn  9075  modfzo0difsn  9767  modsumfzodifsn  9768  hashdifpr  10193  fzo0dvdseq  10951  oddprmgt2  11208
  Copyright terms: Public domain W3C validator