![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifsn | GIF version |
Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
Ref | Expression |
---|---|
eldifsn | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3163 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶})) | |
2 | elsng 3634 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶)) | |
3 | 2 | necon3bbid 2404 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶} ↔ 𝐴 ≠ 𝐶)) |
4 | 3 | pm5.32i 454 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
5 | 1, 4 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ≠ wne 2364 ∖ cdif 3151 {csn 3619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3156 df-sn 3625 |
This theorem is referenced by: eldifsni 3748 rexdifsn 3751 difsn 3756 fnniniseg2 5682 rexsupp 5683 mpodifsnif 6012 suppssfv 6128 suppssov1 6129 dif1o 6493 fidifsnen 6928 en2eleq 7257 en2other2 7258 elni 7370 divvalap 8695 elnnne0 9257 divfnzn 9689 modfzo0difsn 10469 modsumfzodifsn 10470 hashdifpr 10894 eff2 11826 tanvalap 11854 fzo0dvdseq 12002 oddprmgt2 12275 oddprmdvds 12495 4sqlem19 12550 setsslnid 12673 grpinvnzcl 13147 lssneln0 13873 rplogbval 15118 lgsfcl2 15163 lgsval2lem 15167 lgsval3 15175 lgsmod 15183 lgsdirprm 15191 lgsne0 15195 gausslemma2dlem0f 15211 lgsquad2lem2 15239 2lgsoddprm 15270 |
Copyright terms: Public domain | W3C validator |