![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifsn | GIF version |
Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
Ref | Expression |
---|---|
eldifsn | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3162 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶})) | |
2 | elsng 3633 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶)) | |
3 | 2 | necon3bbid 2404 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶} ↔ 𝐴 ≠ 𝐶)) |
4 | 3 | pm5.32i 454 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
5 | 1, 4 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ≠ wne 2364 ∖ cdif 3150 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3155 df-sn 3624 |
This theorem is referenced by: eldifsni 3747 rexdifsn 3750 difsn 3755 fnniniseg2 5681 rexsupp 5682 mpodifsnif 6011 suppssfv 6126 suppssov1 6127 dif1o 6491 fidifsnen 6926 en2eleq 7255 en2other2 7256 elni 7368 divvalap 8693 elnnne0 9254 divfnzn 9686 modfzo0difsn 10466 modsumfzodifsn 10467 hashdifpr 10891 eff2 11823 tanvalap 11851 fzo0dvdseq 11999 oddprmgt2 12272 oddprmdvds 12492 4sqlem19 12547 setsslnid 12670 grpinvnzcl 13144 lssneln0 13870 rplogbval 15077 lgsfcl2 15122 lgsval2lem 15126 lgsval3 15134 lgsmod 15142 lgsdirprm 15150 lgsne0 15154 gausslemma2dlem0f 15170 |
Copyright terms: Public domain | W3C validator |