ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifsn GIF version

Theorem eldifsn 3795
Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
eldifsn (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))

Proof of Theorem eldifsn
StepHypRef Expression
1 eldif 3206 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶}))
2 elsng 3681 . . . 4 (𝐴𝐵 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶))
32necon3bbid 2440 . . 3 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶} ↔ 𝐴𝐶))
43pm5.32i 454 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))
51, 4bitri 184 1 (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wcel 2200  wne 2400  cdif 3194  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-sn 3672
This theorem is referenced by:  eldifsni  3797  rexdifsn  3800  difsn  3805  fnniniseg2  5758  rexsupp  5759  mpodifsnif  6097  suppssfv  6214  suppssov1  6215  dif1o  6584  fidifsnen  7032  en2eleq  7373  en2other2  7374  elni  7495  divvalap  8821  elnnne0  9383  divfnzn  9816  modfzo0difsn  10617  modsumfzodifsn  10618  hashdifpr  11042  eff2  12191  tanvalap  12219  fzo0dvdseq  12368  oddprmgt2  12656  oddprmdvds  12877  4sqlem19  12932  setsslnid  13084  grpinvnzcl  13605  lssneln0  14338  rplogbval  15619  lgsfcl2  15685  lgsval2lem  15689  lgsval3  15697  lgsmod  15705  lgsdirprm  15713  lgsne0  15717  gausslemma2dlem0f  15733  lgsquad2lem2  15761  2lgsoddprm  15792
  Copyright terms: Public domain W3C validator