| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifsn | GIF version | ||
| Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| eldifsn | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3206 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶})) | |
| 2 | elsng 3681 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶)) | |
| 3 | 2 | necon3bbid 2440 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶} ↔ 𝐴 ≠ 𝐶)) |
| 4 | 3 | pm5.32i 454 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ≠ wne 2400 ∖ cdif 3194 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-sn 3672 |
| This theorem is referenced by: eldifsni 3797 rexdifsn 3800 difsn 3805 fnniniseg2 5758 rexsupp 5759 mpodifsnif 6097 suppssfv 6214 suppssov1 6215 dif1o 6584 fidifsnen 7032 en2eleq 7373 en2other2 7374 elni 7495 divvalap 8821 elnnne0 9383 divfnzn 9816 modfzo0difsn 10617 modsumfzodifsn 10618 hashdifpr 11042 eff2 12191 tanvalap 12219 fzo0dvdseq 12368 oddprmgt2 12656 oddprmdvds 12877 4sqlem19 12932 setsslnid 13084 grpinvnzcl 13605 lssneln0 14338 rplogbval 15619 lgsfcl2 15685 lgsval2lem 15689 lgsval3 15697 lgsmod 15705 lgsdirprm 15713 lgsne0 15717 gausslemma2dlem0f 15733 lgsquad2lem2 15761 2lgsoddprm 15792 |
| Copyright terms: Public domain | W3C validator |