| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifsn | GIF version | ||
| Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| eldifsn | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3175 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶})) | |
| 2 | elsng 3648 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶)) | |
| 3 | 2 | necon3bbid 2416 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶} ↔ 𝐴 ≠ 𝐶)) |
| 4 | 3 | pm5.32i 454 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 ≠ wne 2376 ∖ cdif 3163 {csn 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-v 2774 df-dif 3168 df-sn 3639 |
| This theorem is referenced by: eldifsni 3762 rexdifsn 3765 difsn 3770 fnniniseg2 5703 rexsupp 5704 mpodifsnif 6038 suppssfv 6154 suppssov1 6155 dif1o 6524 fidifsnen 6967 en2eleq 7303 en2other2 7304 elni 7421 divvalap 8747 elnnne0 9309 divfnzn 9742 modfzo0difsn 10540 modsumfzodifsn 10541 hashdifpr 10965 eff2 11991 tanvalap 12019 fzo0dvdseq 12168 oddprmgt2 12456 oddprmdvds 12677 4sqlem19 12732 setsslnid 12884 grpinvnzcl 13404 lssneln0 14136 rplogbval 15417 lgsfcl2 15483 lgsval2lem 15487 lgsval3 15495 lgsmod 15503 lgsdirprm 15511 lgsne0 15515 gausslemma2dlem0f 15531 lgsquad2lem2 15559 2lgsoddprm 15590 |
| Copyright terms: Public domain | W3C validator |