![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifsn | GIF version |
Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
Ref | Expression |
---|---|
eldifsn | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3152 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶})) | |
2 | elsng 3621 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶)) | |
3 | 2 | necon3bbid 2399 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶} ↔ 𝐴 ≠ 𝐶)) |
4 | 3 | pm5.32i 454 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
5 | 1, 4 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2159 ≠ wne 2359 ∖ cdif 3140 {csn 3606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-v 2753 df-dif 3145 df-sn 3612 |
This theorem is referenced by: eldifsni 3735 rexdifsn 3738 difsn 3743 fnniniseg2 5654 rexsupp 5655 mpodifsnif 5983 suppssfv 6096 suppssov1 6097 dif1o 6456 fidifsnen 6887 en2eleq 7211 en2other2 7212 elni 7324 divvalap 8648 elnnne0 9207 divfnzn 9638 modfzo0difsn 10412 modsumfzodifsn 10413 hashdifpr 10817 eff2 11705 tanvalap 11733 fzo0dvdseq 11880 oddprmgt2 12151 oddprmdvds 12369 setsslnid 12531 grpinvnzcl 12981 lssneln0 13650 rplogbval 14746 lgsfcl2 14790 lgsval2lem 14794 lgsval3 14802 lgsmod 14810 lgsdirprm 14818 lgsne0 14822 |
Copyright terms: Public domain | W3C validator |