Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifsn | GIF version |
Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
Ref | Expression |
---|---|
eldifsn | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3125 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶})) | |
2 | elsng 3591 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶)) | |
3 | 2 | necon3bbid 2376 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶} ↔ 𝐴 ≠ 𝐶)) |
4 | 3 | pm5.32i 450 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
5 | 1, 4 | bitri 183 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 ≠ wne 2336 ∖ cdif 3113 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-dif 3118 df-sn 3582 |
This theorem is referenced by: eldifsni 3705 rexdifsn 3708 difsn 3710 fnniniseg2 5608 rexsupp 5609 mpodifsnif 5935 suppssfv 6046 suppssov1 6047 dif1o 6406 fidifsnen 6836 en2eleq 7151 en2other2 7152 elni 7249 divvalap 8570 elnnne0 9128 divfnzn 9559 modfzo0difsn 10330 modsumfzodifsn 10331 hashdifpr 10733 eff2 11621 tanvalap 11649 fzo0dvdseq 11795 oddprmgt2 12066 oddprmdvds 12284 setsslnid 12445 rplogbval 13503 lgsfcl2 13547 lgsval2lem 13551 lgsval3 13559 lgsmod 13567 lgsdirprm 13575 lgsne0 13579 |
Copyright terms: Public domain | W3C validator |