| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifsn | GIF version | ||
| Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| eldifsn | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3166 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶})) | |
| 2 | elsng 3637 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶)) | |
| 3 | 2 | necon3bbid 2407 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶} ↔ 𝐴 ≠ 𝐶)) |
| 4 | 3 | pm5.32i 454 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ≠ wne 2367 ∖ cdif 3154 {csn 3622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-sn 3628 |
| This theorem is referenced by: eldifsni 3751 rexdifsn 3754 difsn 3759 fnniniseg2 5685 rexsupp 5686 mpodifsnif 6015 suppssfv 6131 suppssov1 6132 dif1o 6496 fidifsnen 6931 en2eleq 7262 en2other2 7263 elni 7375 divvalap 8701 elnnne0 9263 divfnzn 9695 modfzo0difsn 10487 modsumfzodifsn 10488 hashdifpr 10912 eff2 11845 tanvalap 11873 fzo0dvdseq 12022 oddprmgt2 12302 oddprmdvds 12523 4sqlem19 12578 setsslnid 12730 grpinvnzcl 13204 lssneln0 13930 rplogbval 15181 lgsfcl2 15247 lgsval2lem 15251 lgsval3 15259 lgsmod 15267 lgsdirprm 15275 lgsne0 15279 gausslemma2dlem0f 15295 lgsquad2lem2 15323 2lgsoddprm 15354 |
| Copyright terms: Public domain | W3C validator |