| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifsn | GIF version | ||
| Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| eldifsn | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3166 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶})) | |
| 2 | elsng 3638 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶)) | |
| 3 | 2 | necon3bbid 2407 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶} ↔ 𝐴 ≠ 𝐶)) |
| 4 | 3 | pm5.32i 454 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ≠ wne 2367 ∖ cdif 3154 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-sn 3629 |
| This theorem is referenced by: eldifsni 3752 rexdifsn 3755 difsn 3760 fnniniseg2 5688 rexsupp 5689 mpodifsnif 6019 suppssfv 6135 suppssov1 6136 dif1o 6505 fidifsnen 6940 en2eleq 7276 en2other2 7277 elni 7394 divvalap 8720 elnnne0 9282 divfnzn 9714 modfzo0difsn 10506 modsumfzodifsn 10507 hashdifpr 10931 eff2 11864 tanvalap 11892 fzo0dvdseq 12041 oddprmgt2 12329 oddprmdvds 12550 4sqlem19 12605 setsslnid 12757 grpinvnzcl 13276 lssneln0 14008 rplogbval 15289 lgsfcl2 15355 lgsval2lem 15359 lgsval3 15367 lgsmod 15375 lgsdirprm 15383 lgsne0 15387 gausslemma2dlem0f 15403 lgsquad2lem2 15431 2lgsoddprm 15462 |
| Copyright terms: Public domain | W3C validator |