ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabn0r GIF version

Theorem rabn0r 3393
Description: Nonempty restricted class abstraction. (Contributed by Jim Kingdon, 1-Aug-2018.)
Assertion
Ref Expression
rabn0r (∃𝑥𝐴 𝜑 → {𝑥𝐴𝜑} ≠ ∅)

Proof of Theorem rabn0r
StepHypRef Expression
1 abn0r 3391 . 2 (∃𝑥(𝑥𝐴𝜑) → {𝑥 ∣ (𝑥𝐴𝜑)} ≠ ∅)
2 df-rex 2423 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
3 df-rab 2426 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43neeq1i 2324 . 2 ({𝑥𝐴𝜑} ≠ ∅ ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ≠ ∅)
51, 2, 43imtr4i 200 1 (∃𝑥𝐴 𝜑 → {𝑥𝐴𝜑} ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1469  wcel 1481  {cab 2126  wne 2309  wrex 2418  {crab 2421  c0 3367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3077  df-nul 3368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator