ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabn0r GIF version

Theorem rabn0r 3336
Description: Nonempty restricted class abstraction. (Contributed by Jim Kingdon, 1-Aug-2018.)
Assertion
Ref Expression
rabn0r (∃𝑥𝐴 𝜑 → {𝑥𝐴𝜑} ≠ ∅)

Proof of Theorem rabn0r
StepHypRef Expression
1 abn0r 3334 . 2 (∃𝑥(𝑥𝐴𝜑) → {𝑥 ∣ (𝑥𝐴𝜑)} ≠ ∅)
2 df-rex 2381 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
3 df-rab 2384 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43neeq1i 2282 . 2 ({𝑥𝐴𝜑} ≠ ∅ ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ≠ ∅)
51, 2, 43imtr4i 200 1 (∃𝑥𝐴 𝜑 → {𝑥𝐴𝜑} ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1436  wcel 1448  {cab 2086  wne 2267  wrex 2376  {crab 2379  c0 3310
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-rex 2381  df-rab 2384  df-v 2643  df-dif 3023  df-nul 3311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator