ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabn0r GIF version

Theorem rabn0r 3451
Description: Nonempty restricted class abstraction. (Contributed by Jim Kingdon, 1-Aug-2018.)
Assertion
Ref Expression
rabn0r (∃𝑥𝐴 𝜑 → {𝑥𝐴𝜑} ≠ ∅)

Proof of Theorem rabn0r
StepHypRef Expression
1 abn0r 3449 . 2 (∃𝑥(𝑥𝐴𝜑) → {𝑥 ∣ (𝑥𝐴𝜑)} ≠ ∅)
2 df-rex 2461 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
3 df-rab 2464 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43neeq1i 2362 . 2 ({𝑥𝐴𝜑} ≠ ∅ ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ≠ ∅)
51, 2, 43imtr4i 201 1 (∃𝑥𝐴 𝜑 → {𝑥𝐴𝜑} ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1492  wcel 2148  {cab 2163  wne 2347  wrex 2456  {crab 2459  c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-nul 3425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator