Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > basendxnmulrndx | GIF version |
Description: The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) |
Ref | Expression |
---|---|
basendxnmulrndx | ⊢ (Base‘ndx) ≠ (.r‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 12422 | . . 3 ⊢ Base = Slot 1 | |
2 | 1nn 8889 | . . 3 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxarg 12439 | . 2 ⊢ (Base‘ndx) = 1 |
4 | 1re 7919 | . . . 4 ⊢ 1 ∈ ℝ | |
5 | 1lt3 9049 | . . . 4 ⊢ 1 < 3 | |
6 | 4, 5 | ltneii 8016 | . . 3 ⊢ 1 ≠ 3 |
7 | mulrndx 12528 | . . 3 ⊢ (.r‘ndx) = 3 | |
8 | 6, 7 | neeqtrri 2369 | . 2 ⊢ 1 ≠ (.r‘ndx) |
9 | 3, 8 | eqnetri 2363 | 1 ⊢ (Base‘ndx) ≠ (.r‘ndx) |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2340 ‘cfv 5198 1c1 7775 3c3 8930 ndxcnx 12413 Basecbs 12416 .rcmulr 12481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-inn 8879 df-2 8937 df-3 8938 df-ndx 12419 df-slot 12420 df-base 12422 df-mulr 12494 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |