| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > basendxnmulrndx | GIF version | ||
| Description: The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) |
| Ref | Expression |
|---|---|
| basendxnmulrndx | ⊢ (Base‘ndx) ≠ (.r‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 13004 | . . 3 ⊢ Base = Slot 1 | |
| 2 | 1nn 9089 | . . 3 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 13021 | . 2 ⊢ (Base‘ndx) = 1 |
| 4 | 1re 8113 | . . . 4 ⊢ 1 ∈ ℝ | |
| 5 | 1lt3 9250 | . . . 4 ⊢ 1 < 3 | |
| 6 | 4, 5 | ltneii 8211 | . . 3 ⊢ 1 ≠ 3 |
| 7 | mulrndx 13129 | . . 3 ⊢ (.r‘ndx) = 3 | |
| 8 | 6, 7 | neeqtrri 2409 | . 2 ⊢ 1 ≠ (.r‘ndx) |
| 9 | 3, 8 | eqnetri 2403 | 1 ⊢ (Base‘ndx) ≠ (.r‘ndx) |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2380 ‘cfv 5294 1c1 7968 3c3 9130 ndxcnx 12995 Basecbs 12998 .rcmulr 13077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fv 5302 df-ov 5977 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-ndx 13001 df-slot 13002 df-base 13004 df-mulr 13090 |
| This theorem is referenced by: ressmulrg 13144 imasbas 13306 imasmulr 13308 opprbasg 14004 |
| Copyright terms: Public domain | W3C validator |