![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pnfnemnf | GIF version |
Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
pnfnemnf | ⊢ +∞ ≠ -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 7736 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | pwne 4042 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
3 | 1, 2 | ax-mp 7 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
4 | 3 | necomi 2365 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
5 | df-mnf 7721 | . 2 ⊢ -∞ = 𝒫 +∞ | |
6 | 4, 5 | neeqtrri 2309 | 1 ⊢ +∞ ≠ -∞ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1461 ≠ wne 2280 𝒫 cpw 3474 +∞cpnf 7715 -∞cmnf 7716 ℝ*cxr 7717 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-un 4313 ax-cnex 7630 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-rex 2394 df-rab 2397 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-uni 3701 df-pnf 7720 df-mnf 7721 df-xr 7722 |
This theorem is referenced by: mnfnepnf 7739 xnn0nemnf 8949 xrnemnf 9451 xrltnr 9453 pnfnlt 9460 nltmnf 9461 ngtmnft 9487 xrmnfdc 9513 xaddpnf1 9516 xaddnemnf 9527 xposdif 9552 xleaddadd 9557 |
Copyright terms: Public domain | W3C validator |