![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pnfnemnf | GIF version |
Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
pnfnemnf | ⊢ +∞ ≠ -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 8072 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | pwne 4189 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
4 | 3 | necomi 2449 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
5 | df-mnf 8057 | . 2 ⊢ -∞ = 𝒫 +∞ | |
6 | 4, 5 | neeqtrri 2393 | 1 ⊢ +∞ ≠ -∞ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ≠ wne 2364 𝒫 cpw 3601 +∞cpnf 8051 -∞cmnf 8052 ℝ*cxr 8053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-un 4464 ax-cnex 7963 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-pnf 8056 df-mnf 8057 df-xr 8058 |
This theorem is referenced by: mnfnepnf 8075 xnn0nemnf 9314 xrnemnf 9843 xrltnr 9845 pnfnlt 9853 nltmnf 9854 ngtmnft 9883 xrmnfdc 9909 xaddpnf1 9912 xaddnemnf 9923 xposdif 9948 xleaddadd 9953 |
Copyright terms: Public domain | W3C validator |