![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pnfnemnf | GIF version |
Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
pnfnemnf | ⊢ +∞ ≠ -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 8074 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | pwne 4190 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
4 | 3 | necomi 2449 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
5 | df-mnf 8059 | . 2 ⊢ -∞ = 𝒫 +∞ | |
6 | 4, 5 | neeqtrri 2393 | 1 ⊢ +∞ ≠ -∞ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ≠ wne 2364 𝒫 cpw 3602 +∞cpnf 8053 -∞cmnf 8054 ℝ*cxr 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-un 4465 ax-cnex 7965 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-pnf 8058 df-mnf 8059 df-xr 8060 |
This theorem is referenced by: mnfnepnf 8077 xnn0nemnf 9317 xrnemnf 9846 xrltnr 9848 pnfnlt 9856 nltmnf 9857 ngtmnft 9886 xrmnfdc 9912 xaddpnf1 9915 xaddnemnf 9926 xposdif 9951 xleaddadd 9956 |
Copyright terms: Public domain | W3C validator |