Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pnfnemnf | GIF version |
Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
pnfnemnf | ⊢ +∞ ≠ -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 7984 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | pwne 4155 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
4 | 3 | necomi 2430 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
5 | df-mnf 7969 | . 2 ⊢ -∞ = 𝒫 +∞ | |
6 | 4, 5 | neeqtrri 2374 | 1 ⊢ +∞ ≠ -∞ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 ≠ wne 2345 𝒫 cpw 3572 +∞cpnf 7963 -∞cmnf 7964 ℝ*cxr 7965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-un 4427 ax-cnex 7877 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-pnf 7968 df-mnf 7969 df-xr 7970 |
This theorem is referenced by: mnfnepnf 7987 xnn0nemnf 9223 xrnemnf 9748 xrltnr 9750 pnfnlt 9758 nltmnf 9759 ngtmnft 9788 xrmnfdc 9814 xaddpnf1 9817 xaddnemnf 9828 xposdif 9853 xleaddadd 9858 |
Copyright terms: Public domain | W3C validator |