| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfnemnf | GIF version | ||
| Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnemnf | ⊢ +∞ ≠ -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 8096 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 2 | pwne 4194 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
| 4 | 3 | necomi 2452 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
| 5 | df-mnf 8081 | . 2 ⊢ -∞ = 𝒫 +∞ | |
| 6 | 4, 5 | neeqtrri 2396 | 1 ⊢ +∞ ≠ -∞ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ≠ wne 2367 𝒫 cpw 3606 +∞cpnf 8075 -∞cmnf 8076 ℝ*cxr 8077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-un 4469 ax-cnex 7987 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-pnf 8080 df-mnf 8081 df-xr 8082 |
| This theorem is referenced by: mnfnepnf 8099 xnn0nemnf 9340 xrnemnf 9869 xrltnr 9871 pnfnlt 9879 nltmnf 9880 ngtmnft 9909 xrmnfdc 9935 xaddpnf1 9938 xaddnemnf 9949 xposdif 9974 xleaddadd 9979 |
| Copyright terms: Public domain | W3C validator |