ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnemnf GIF version

Theorem pnfnemnf 7953
Description: Plus and minus infinity are different elements of *. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
pnfnemnf +∞ ≠ -∞

Proof of Theorem pnfnemnf
StepHypRef Expression
1 pnfxr 7951 . . . 4 +∞ ∈ ℝ*
2 pwne 4139 . . . 4 (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞)
31, 2ax-mp 5 . . 3 𝒫 +∞ ≠ +∞
43necomi 2421 . 2 +∞ ≠ 𝒫 +∞
5 df-mnf 7936 . 2 -∞ = 𝒫 +∞
64, 5neeqtrri 2365 1 +∞ ≠ -∞
Colors of variables: wff set class
Syntax hints:  wcel 2136  wne 2336  𝒫 cpw 3559  +∞cpnf 7930  -∞cmnf 7931  *cxr 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-un 4411  ax-cnex 7844
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-pnf 7935  df-mnf 7936  df-xr 7937
This theorem is referenced by:  mnfnepnf  7954  xnn0nemnf  9188  xrnemnf  9713  xrltnr  9715  pnfnlt  9723  nltmnf  9724  ngtmnft  9753  xrmnfdc  9779  xaddpnf1  9782  xaddnemnf  9793  xposdif  9818  xleaddadd  9823
  Copyright terms: Public domain W3C validator