| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfnemnf | GIF version | ||
| Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnemnf | ⊢ +∞ ≠ -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 8125 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 2 | pwne 4204 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
| 4 | 3 | necomi 2461 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
| 5 | df-mnf 8110 | . 2 ⊢ -∞ = 𝒫 +∞ | |
| 6 | 4, 5 | neeqtrri 2405 | 1 ⊢ +∞ ≠ -∞ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 ≠ wne 2376 𝒫 cpw 3616 +∞cpnf 8104 -∞cmnf 8105 ℝ*cxr 8106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-un 4480 ax-cnex 8016 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-pnf 8109 df-mnf 8110 df-xr 8111 |
| This theorem is referenced by: mnfnepnf 8128 xnn0nemnf 9369 xrnemnf 9899 xrltnr 9901 pnfnlt 9909 nltmnf 9910 ngtmnft 9939 xrmnfdc 9965 xaddpnf1 9968 xaddnemnf 9979 xposdif 10004 xleaddadd 10009 |
| Copyright terms: Public domain | W3C validator |