ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusgndxnmulrndx GIF version

Theorem plusgndxnmulrndx 12061
Description: The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
Assertion
Ref Expression
plusgndxnmulrndx (+g‘ndx) ≠ (.r‘ndx)

Proof of Theorem plusgndxnmulrndx
StepHypRef Expression
1 plusgndx 12041 . 2 (+g‘ndx) = 2
2 2re 8783 . . . 4 2 ∈ ℝ
3 2lt3 8883 . . . 4 2 < 3
42, 3ltneii 7853 . . 3 2 ≠ 3
5 mulrndx 12058 . . 3 (.r‘ndx) = 3
64, 5neeqtrri 2335 . 2 2 ≠ (.r‘ndx)
71, 6eqnetri 2329 1 (+g‘ndx) ≠ (.r‘ndx)
Colors of variables: wff set class
Syntax hints:  wne 2306  cfv 5118  2c2 8764  3c3 8765  ndxcnx 11945  +gcplusg 12010  .rcmulr 12011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-pre-ltirr 7725  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-iota 5083  df-fun 5120  df-fv 5126  df-ov 5770  df-pnf 7795  df-mnf 7796  df-ltxr 7798  df-inn 8714  df-2 8772  df-3 8773  df-ndx 11951  df-slot 11952  df-plusg 12023  df-mulr 12024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator