Proof of Theorem pwle2
Step | Hyp | Ref
| Expression |
1 | | simplr 520 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → 𝐺:𝑇–1-1→𝒫 1o) |
2 | | f1f 5372 |
. . . . . . . . . . 11
⊢ (𝐺:𝑇–1-1→𝒫 1o → 𝐺:𝑇⟶𝒫
1o) |
3 | 1, 2 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → 𝐺:𝑇⟶𝒫
1o) |
4 | | nnon 4567 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ω → 𝑁 ∈ On) |
5 | 4 | ad2antrr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → 𝑁 ∈ On) |
6 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
2o ∈ 𝑁) |
7 | | 1lt2o 6383 |
. . . . . . . . . . . . . 14
⊢
1o ∈ 2o |
8 | 6, 7 | jctil 310 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
(1o ∈ 2o ∧ 2o ∈ 𝑁)) |
9 | | ontr1 4348 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ On →
((1o ∈ 2o ∧ 2o ∈ 𝑁) → 1o ∈
𝑁)) |
10 | 5, 8, 9 | sylc 62 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
1o ∈ 𝑁) |
11 | | 0lt1o 6381 |
. . . . . . . . . . . 12
⊢ ∅
∈ 1o |
12 | | opelxpi 4615 |
. . . . . . . . . . . 12
⊢
((1o ∈ 𝑁 ∧ ∅ ∈ 1o) →
〈1o, ∅〉 ∈ (𝑁 × 1o)) |
13 | 10, 11, 12 | sylancl 410 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
〈1o, ∅〉 ∈ (𝑁 × 1o)) |
14 | | pwle2.t |
. . . . . . . . . . . 12
⊢ 𝑇 = ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) |
15 | | iunxpconst 4643 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) = (𝑁 × 1o) |
16 | 14, 15 | eqtri 2178 |
. . . . . . . . . . 11
⊢ 𝑇 = (𝑁 × 1o) |
17 | 13, 16 | eleqtrrdi 2251 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
〈1o, ∅〉 ∈ 𝑇) |
18 | 3, 17 | ffvelrnd 5600 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈1o,
∅〉) ∈ 𝒫 1o) |
19 | 18 | elpwid 3554 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈1o,
∅〉) ⊆ 1o) |
20 | | df1o2 6370 |
. . . . . . . 8
⊢
1o = {∅} |
21 | 19, 20 | sseqtrdi 3176 |
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈1o,
∅〉) ⊆ {∅}) |
22 | | pwtrufal 13530 |
. . . . . . 7
⊢ ((𝐺‘〈1o,
∅〉) ⊆ {∅} → ¬ ¬ ((𝐺‘〈1o, ∅〉) =
∅ ∨ (𝐺‘〈1o, ∅〉) =
{∅})) |
23 | 21, 22 | syl 14 |
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
¬ ((𝐺‘〈1o, ∅〉) =
∅ ∨ (𝐺‘〈1o, ∅〉) =
{∅})) |
24 | | ioran 742 |
. . . . . 6
⊢ (¬
((𝐺‘〈1o, ∅〉) =
∅ ∨ (𝐺‘〈1o, ∅〉) =
{∅}) ↔ (¬ (𝐺‘〈1o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈1o, ∅〉) =
{∅})) |
25 | 23, 24 | sylnib 666 |
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(¬ (𝐺‘〈1o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈1o, ∅〉) =
{∅})) |
26 | | 1n0 6373 |
. . . . . . . . . . 11
⊢
1o ≠ ∅ |
27 | 26 | neii 2329 |
. . . . . . . . . 10
⊢ ¬
1o = ∅ |
28 | | 1oex 6365 |
. . . . . . . . . . 11
⊢
1o ∈ V |
29 | | 0ex 4091 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
30 | 28, 29 | opth1 4195 |
. . . . . . . . . 10
⊢
(〈1o, ∅〉 = 〈∅, ∅〉
→ 1o = ∅) |
31 | 27, 30 | mto 652 |
. . . . . . . . 9
⊢ ¬
〈1o, ∅〉 = 〈∅,
∅〉 |
32 | | 0lt2o 6382 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ 2o |
33 | 6, 32 | jctil 310 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (∅
∈ 2o ∧ 2o ∈ 𝑁)) |
34 | | ontr1 4348 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ On → ((∅
∈ 2o ∧ 2o ∈ 𝑁) → ∅ ∈ 𝑁)) |
35 | 5, 33, 34 | sylc 62 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ∅
∈ 𝑁) |
36 | | opelxpi 4615 |
. . . . . . . . . . . 12
⊢ ((∅
∈ 𝑁 ∧ ∅
∈ 1o) → 〈∅, ∅〉 ∈ (𝑁 ×
1o)) |
37 | 35, 11, 36 | sylancl 410 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
〈∅, ∅〉 ∈ (𝑁 × 1o)) |
38 | 37, 16 | eleqtrrdi 2251 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
〈∅, ∅〉 ∈ 𝑇) |
39 | | f1veqaeq 5714 |
. . . . . . . . . 10
⊢ ((𝐺:𝑇–1-1→𝒫 1o ∧
(〈1o, ∅〉 ∈ 𝑇 ∧ 〈∅, ∅〉 ∈
𝑇)) → ((𝐺‘〈1o,
∅〉) = (𝐺‘〈∅, ∅〉) →
〈1o, ∅〉 = 〈∅,
∅〉)) |
40 | 1, 17, 38, 39 | syl12anc 1218 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ((𝐺‘〈1o,
∅〉) = (𝐺‘〈∅, ∅〉) →
〈1o, ∅〉 = 〈∅,
∅〉)) |
41 | 31, 40 | mtoi 654 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(𝐺‘〈1o, ∅〉) =
(𝐺‘〈∅,
∅〉)) |
42 | 41 | adantr 274 |
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) → ¬ (𝐺‘〈1o, ∅〉) =
(𝐺‘〈∅,
∅〉)) |
43 | | simpr 109 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) → (𝐺‘〈∅, ∅〉) =
∅) |
44 | 43 | eqeq2d 2169 |
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) → ((𝐺‘〈1o, ∅〉) =
(𝐺‘〈∅,
∅〉) ↔ (𝐺‘〈1o, ∅〉) =
∅)) |
45 | 42, 44 | mtbid 662 |
. . . . . 6
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) → ¬ (𝐺‘〈1o, ∅〉) =
∅) |
46 | | 2on0 6367 |
. . . . . . . . . . . . . 14
⊢
2o ≠ ∅ |
47 | 46 | nesymi 2373 |
. . . . . . . . . . . . 13
⊢ ¬
∅ = 2o |
48 | 29, 29 | opth1 4195 |
. . . . . . . . . . . . 13
⊢
(〈∅, ∅〉 = 〈2o, ∅〉
→ ∅ = 2o) |
49 | 47, 48 | mto 652 |
. . . . . . . . . . . 12
⊢ ¬
〈∅, ∅〉 = 〈2o,
∅〉 |
50 | | opelxpi 4615 |
. . . . . . . . . . . . . . 15
⊢
((2o ∈ 𝑁 ∧ ∅ ∈ 1o) →
〈2o, ∅〉 ∈ (𝑁 × 1o)) |
51 | 6, 11, 50 | sylancl 410 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
〈2o, ∅〉 ∈ (𝑁 × 1o)) |
52 | 51, 16 | eleqtrrdi 2251 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
〈2o, ∅〉 ∈ 𝑇) |
53 | | f1veqaeq 5714 |
. . . . . . . . . . . . 13
⊢ ((𝐺:𝑇–1-1→𝒫 1o ∧ (〈∅,
∅〉 ∈ 𝑇
∧ 〈2o, ∅〉 ∈ 𝑇)) → ((𝐺‘〈∅, ∅〉) =
(𝐺‘〈2o, ∅〉)
→ 〈∅, ∅〉 = 〈2o,
∅〉)) |
54 | 1, 38, 52, 53 | syl12anc 1218 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ((𝐺‘〈∅,
∅〉) = (𝐺‘〈2o, ∅〉)
→ 〈∅, ∅〉 = 〈2o,
∅〉)) |
55 | 49, 54 | mtoi 654 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(𝐺‘〈∅,
∅〉) = (𝐺‘〈2o,
∅〉)) |
56 | 55 | ad2antrr 480 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ (𝐺‘〈∅, ∅〉) =
(𝐺‘〈2o,
∅〉)) |
57 | | simplr 520 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → (𝐺‘〈∅, ∅〉) =
∅) |
58 | 57 | eqeq1d 2166 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ((𝐺‘〈∅, ∅〉) =
(𝐺‘〈2o, ∅〉)
↔ ∅ = (𝐺‘〈2o,
∅〉))) |
59 | 56, 58 | mtbid 662 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ ∅ = (𝐺‘〈2o,
∅〉)) |
60 | | eqcom 2159 |
. . . . . . . . 9
⊢ (∅
= (𝐺‘〈2o, ∅〉)
↔ (𝐺‘〈2o, ∅〉) =
∅) |
61 | 59, 60 | sylnib 666 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ (𝐺‘〈2o, ∅〉) =
∅) |
62 | | 1onn 6460 |
. . . . . . . . . . . . . . . . . 18
⊢
1o ∈ ω |
63 | | peano1 4551 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ ω |
64 | | peano4 4554 |
. . . . . . . . . . . . . . . . . 18
⊢
((1o ∈ ω ∧ ∅ ∈ ω) → (suc
1o = suc ∅ ↔ 1o = ∅)) |
65 | 62, 63, 64 | mp2an 423 |
. . . . . . . . . . . . . . . . 17
⊢ (suc
1o = suc ∅ ↔ 1o = ∅) |
66 | 26, 65 | nemtbir 2416 |
. . . . . . . . . . . . . . . 16
⊢ ¬
suc 1o = suc ∅ |
67 | | df-2o 6358 |
. . . . . . . . . . . . . . . . 17
⊢
2o = suc 1o |
68 | | df-1o 6357 |
. . . . . . . . . . . . . . . . 17
⊢
1o = suc ∅ |
69 | 67, 68 | eqeq12i 2171 |
. . . . . . . . . . . . . . . 16
⊢
(2o = 1o ↔ suc 1o = suc
∅) |
70 | 66, 69 | mtbir 661 |
. . . . . . . . . . . . . . 15
⊢ ¬
2o = 1o |
71 | 70 | neir 2330 |
. . . . . . . . . . . . . 14
⊢
2o ≠ 1o |
72 | 71 | nesymi 2373 |
. . . . . . . . . . . . 13
⊢ ¬
1o = 2o |
73 | 28, 29 | opth1 4195 |
. . . . . . . . . . . . 13
⊢
(〈1o, ∅〉 = 〈2o, ∅〉
→ 1o = 2o) |
74 | 72, 73 | mto 652 |
. . . . . . . . . . . 12
⊢ ¬
〈1o, ∅〉 = 〈2o,
∅〉 |
75 | | f1veqaeq 5714 |
. . . . . . . . . . . . 13
⊢ ((𝐺:𝑇–1-1→𝒫 1o ∧
(〈1o, ∅〉 ∈ 𝑇 ∧ 〈2o, ∅〉
∈ 𝑇)) → ((𝐺‘〈1o,
∅〉) = (𝐺‘〈2o, ∅〉)
→ 〈1o, ∅〉 = 〈2o,
∅〉)) |
76 | 1, 17, 52, 75 | syl12anc 1218 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ((𝐺‘〈1o,
∅〉) = (𝐺‘〈2o, ∅〉)
→ 〈1o, ∅〉 = 〈2o,
∅〉)) |
77 | 74, 76 | mtoi 654 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(𝐺‘〈1o, ∅〉) =
(𝐺‘〈2o,
∅〉)) |
78 | 77 | ad2antrr 480 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ (𝐺‘〈1o, ∅〉) =
(𝐺‘〈2o,
∅〉)) |
79 | | simpr 109 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → (𝐺‘〈1o, ∅〉) =
{∅}) |
80 | 79 | eqeq1d 2166 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ((𝐺‘〈1o, ∅〉) =
(𝐺‘〈2o, ∅〉)
↔ {∅} = (𝐺‘〈2o,
∅〉))) |
81 | 78, 80 | mtbid 662 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ {∅} = (𝐺‘〈2o,
∅〉)) |
82 | | eqcom 2159 |
. . . . . . . . 9
⊢
({∅} = (𝐺‘〈2o, ∅〉)
↔ (𝐺‘〈2o, ∅〉) =
{∅}) |
83 | 81, 82 | sylnib 666 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ (𝐺‘〈2o, ∅〉) =
{∅}) |
84 | 61, 83 | jca 304 |
. . . . . . 7
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → (¬ (𝐺‘〈2o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈2o, ∅〉) =
{∅})) |
85 | 3, 52 | ffvelrnd 5600 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈2o,
∅〉) ∈ 𝒫 1o) |
86 | 85 | elpwid 3554 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈2o,
∅〉) ⊆ 1o) |
87 | 86, 20 | sseqtrdi 3176 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈2o,
∅〉) ⊆ {∅}) |
88 | | pwtrufal 13530 |
. . . . . . . . . 10
⊢ ((𝐺‘〈2o,
∅〉) ⊆ {∅} → ¬ ¬ ((𝐺‘〈2o, ∅〉) =
∅ ∨ (𝐺‘〈2o, ∅〉) =
{∅})) |
89 | 87, 88 | syl 14 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
¬ ((𝐺‘〈2o, ∅〉) =
∅ ∨ (𝐺‘〈2o, ∅〉) =
{∅})) |
90 | | ioran 742 |
. . . . . . . . 9
⊢ (¬
((𝐺‘〈2o, ∅〉) =
∅ ∨ (𝐺‘〈2o, ∅〉) =
{∅}) ↔ (¬ (𝐺‘〈2o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈2o, ∅〉) =
{∅})) |
91 | 89, 90 | sylnib 666 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(¬ (𝐺‘〈2o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈2o, ∅〉) =
{∅})) |
92 | 91 | ad2antrr 480 |
. . . . . . 7
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ (¬ (𝐺‘〈2o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈2o, ∅〉) =
{∅})) |
93 | 84, 92 | pm2.65da 651 |
. . . . . 6
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) → ¬ (𝐺‘〈1o, ∅〉) =
{∅}) |
94 | 45, 93 | jca 304 |
. . . . 5
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) → (¬ (𝐺‘〈1o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈1o, ∅〉) =
{∅})) |
95 | 25, 94 | mtand 655 |
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(𝐺‘〈∅,
∅〉) = ∅) |
96 | | eqcom 2159 |
. . . . . . . . . . 11
⊢ ((𝐺‘〈1o,
∅〉) = (𝐺‘〈2o, ∅〉)
↔ (𝐺‘〈2o, ∅〉) =
(𝐺‘〈1o,
∅〉)) |
97 | 77, 96 | sylnib 666 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(𝐺‘〈2o, ∅〉) =
(𝐺‘〈1o,
∅〉)) |
98 | 97 | ad2antrr 480 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ¬ (𝐺‘〈2o, ∅〉) =
(𝐺‘〈1o,
∅〉)) |
99 | | simpr 109 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → (𝐺‘〈1o, ∅〉) =
∅) |
100 | 99 | eqeq2d 2169 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ((𝐺‘〈2o, ∅〉) =
(𝐺‘〈1o, ∅〉)
↔ (𝐺‘〈2o, ∅〉) =
∅)) |
101 | 98, 100 | mtbid 662 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ¬ (𝐺‘〈2o, ∅〉) =
∅) |
102 | 55 | ad2antrr 480 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ¬ (𝐺‘〈∅, ∅〉) =
(𝐺‘〈2o,
∅〉)) |
103 | | eqcom 2159 |
. . . . . . . . . 10
⊢ ((𝐺‘〈∅,
∅〉) = (𝐺‘〈2o, ∅〉)
↔ (𝐺‘〈2o, ∅〉) =
(𝐺‘〈∅,
∅〉)) |
104 | 102, 103 | sylnib 666 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ¬ (𝐺‘〈2o, ∅〉) =
(𝐺‘〈∅,
∅〉)) |
105 | | simplr 520 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → (𝐺‘〈∅, ∅〉) =
{∅}) |
106 | 105 | eqeq2d 2169 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ((𝐺‘〈2o, ∅〉) =
(𝐺‘〈∅,
∅〉) ↔ (𝐺‘〈2o, ∅〉) =
{∅})) |
107 | 104, 106 | mtbid 662 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ¬ (𝐺‘〈2o, ∅〉) =
{∅}) |
108 | 101, 107 | jca 304 |
. . . . . . 7
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → (¬ (𝐺‘〈2o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈2o, ∅〉) =
{∅})) |
109 | 91 | ad2antrr 480 |
. . . . . . 7
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ¬ (¬ (𝐺‘〈2o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈2o, ∅〉) =
{∅})) |
110 | 108, 109 | pm2.65da 651 |
. . . . . 6
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) → ¬ (𝐺‘〈1o, ∅〉) =
∅) |
111 | 41 | adantr 274 |
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) → ¬ (𝐺‘〈1o, ∅〉) =
(𝐺‘〈∅,
∅〉)) |
112 | | simpr 109 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) → (𝐺‘〈∅, ∅〉) =
{∅}) |
113 | 112 | eqeq2d 2169 |
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) → ((𝐺‘〈1o, ∅〉) =
(𝐺‘〈∅,
∅〉) ↔ (𝐺‘〈1o, ∅〉) =
{∅})) |
114 | 111, 113 | mtbid 662 |
. . . . . 6
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) → ¬ (𝐺‘〈1o, ∅〉) =
{∅}) |
115 | 110, 114 | jca 304 |
. . . . 5
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) → (¬ (𝐺‘〈1o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈1o, ∅〉) =
{∅})) |
116 | 25, 115 | mtand 655 |
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(𝐺‘〈∅,
∅〉) = {∅}) |
117 | 95, 116 | jca 304 |
. . 3
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (¬
(𝐺‘〈∅,
∅〉) = ∅ ∧ ¬ (𝐺‘〈∅, ∅〉) =
{∅})) |
118 | 3, 38 | ffvelrnd 5600 |
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈∅,
∅〉) ∈ 𝒫 1o) |
119 | 118 | elpwid 3554 |
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈∅,
∅〉) ⊆ 1o) |
120 | 119, 20 | sseqtrdi 3176 |
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈∅,
∅〉) ⊆ {∅}) |
121 | | pwtrufal 13530 |
. . . . 5
⊢ ((𝐺‘〈∅,
∅〉) ⊆ {∅} → ¬ ¬ ((𝐺‘〈∅, ∅〉) =
∅ ∨ (𝐺‘〈∅, ∅〉) =
{∅})) |
122 | 120, 121 | syl 14 |
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
¬ ((𝐺‘〈∅, ∅〉) =
∅ ∨ (𝐺‘〈∅, ∅〉) =
{∅})) |
123 | | ioran 742 |
. . . 4
⊢ (¬
((𝐺‘〈∅,
∅〉) = ∅ ∨ (𝐺‘〈∅, ∅〉) =
{∅}) ↔ (¬ (𝐺‘〈∅, ∅〉) =
∅ ∧ ¬ (𝐺‘〈∅, ∅〉) =
{∅})) |
124 | 122, 123 | sylnib 666 |
. . 3
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(¬ (𝐺‘〈∅, ∅〉) =
∅ ∧ ¬ (𝐺‘〈∅, ∅〉) =
{∅})) |
125 | 117, 124 | pm2.65da 651 |
. 2
⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → ¬
2o ∈ 𝑁) |
126 | | 2onn 6461 |
. . . 4
⊢
2o ∈ ω |
127 | | nntri1 6436 |
. . . 4
⊢ ((𝑁 ∈ ω ∧
2o ∈ ω) → (𝑁 ⊆ 2o ↔ ¬
2o ∈ 𝑁)) |
128 | 126, 127 | mpan2 422 |
. . 3
⊢ (𝑁 ∈ ω → (𝑁 ⊆ 2o ↔
¬ 2o ∈ 𝑁)) |
129 | 128 | adantr 274 |
. 2
⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → (𝑁 ⊆ 2o ↔
¬ 2o ∈ 𝑁)) |
130 | 125, 129 | mpbird 166 |
1
⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → 𝑁 ⊆
2o) |