Proof of Theorem pwle2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simplr 528 | 
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → 𝐺:𝑇–1-1→𝒫 1o) | 
| 2 |   | f1f 5463 | 
. . . . . . . . . . 11
⊢ (𝐺:𝑇–1-1→𝒫 1o → 𝐺:𝑇⟶𝒫
1o) | 
| 3 | 1, 2 | syl 14 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → 𝐺:𝑇⟶𝒫
1o) | 
| 4 |   | nnon 4646 | 
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ω → 𝑁 ∈ On) | 
| 5 | 4 | ad2antrr 488 | 
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → 𝑁 ∈ On) | 
| 6 |   | simpr 110 | 
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
2o ∈ 𝑁) | 
| 7 |   | 1lt2o 6500 | 
. . . . . . . . . . . . . 14
⊢
1o ∈ 2o | 
| 8 | 6, 7 | jctil 312 | 
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
(1o ∈ 2o ∧ 2o ∈ 𝑁)) | 
| 9 |   | ontr1 4424 | 
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ On →
((1o ∈ 2o ∧ 2o ∈ 𝑁) → 1o ∈
𝑁)) | 
| 10 | 5, 8, 9 | sylc 62 | 
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
1o ∈ 𝑁) | 
| 11 |   | 0lt1o 6498 | 
. . . . . . . . . . . 12
⊢ ∅
∈ 1o | 
| 12 |   | opelxpi 4695 | 
. . . . . . . . . . . 12
⊢
((1o ∈ 𝑁 ∧ ∅ ∈ 1o) →
〈1o, ∅〉 ∈ (𝑁 × 1o)) | 
| 13 | 10, 11, 12 | sylancl 413 | 
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
〈1o, ∅〉 ∈ (𝑁 × 1o)) | 
| 14 |   | pwle2.t | 
. . . . . . . . . . . 12
⊢ 𝑇 = ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) | 
| 15 |   | iunxpconst 4723 | 
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ 𝑁 ({𝑥} × 1o) = (𝑁 × 1o) | 
| 16 | 14, 15 | eqtri 2217 | 
. . . . . . . . . . 11
⊢ 𝑇 = (𝑁 × 1o) | 
| 17 | 13, 16 | eleqtrrdi 2290 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
〈1o, ∅〉 ∈ 𝑇) | 
| 18 | 3, 17 | ffvelcdmd 5698 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈1o,
∅〉) ∈ 𝒫 1o) | 
| 19 | 18 | elpwid 3616 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈1o,
∅〉) ⊆ 1o) | 
| 20 |   | df1o2 6487 | 
. . . . . . . 8
⊢
1o = {∅} | 
| 21 | 19, 20 | sseqtrdi 3231 | 
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈1o,
∅〉) ⊆ {∅}) | 
| 22 |   | pwtrufal 15642 | 
. . . . . . 7
⊢ ((𝐺‘〈1o,
∅〉) ⊆ {∅} → ¬ ¬ ((𝐺‘〈1o, ∅〉) =
∅ ∨ (𝐺‘〈1o, ∅〉) =
{∅})) | 
| 23 | 21, 22 | syl 14 | 
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
¬ ((𝐺‘〈1o, ∅〉) =
∅ ∨ (𝐺‘〈1o, ∅〉) =
{∅})) | 
| 24 |   | ioran 753 | 
. . . . . 6
⊢ (¬
((𝐺‘〈1o, ∅〉) =
∅ ∨ (𝐺‘〈1o, ∅〉) =
{∅}) ↔ (¬ (𝐺‘〈1o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈1o, ∅〉) =
{∅})) | 
| 25 | 23, 24 | sylnib 677 | 
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(¬ (𝐺‘〈1o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈1o, ∅〉) =
{∅})) | 
| 26 |   | 1n0 6490 | 
. . . . . . . . . . 11
⊢
1o ≠ ∅ | 
| 27 | 26 | neii 2369 | 
. . . . . . . . . 10
⊢  ¬
1o = ∅ | 
| 28 |   | 1oex 6482 | 
. . . . . . . . . . 11
⊢
1o ∈ V | 
| 29 |   | 0ex 4160 | 
. . . . . . . . . . 11
⊢ ∅
∈ V | 
| 30 | 28, 29 | opth1 4269 | 
. . . . . . . . . 10
⊢
(〈1o, ∅〉 = 〈∅, ∅〉
→ 1o = ∅) | 
| 31 | 27, 30 | mto 663 | 
. . . . . . . . 9
⊢  ¬
〈1o, ∅〉 = 〈∅,
∅〉 | 
| 32 |   | 0lt2o 6499 | 
. . . . . . . . . . . . . 14
⊢ ∅
∈ 2o | 
| 33 | 6, 32 | jctil 312 | 
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (∅
∈ 2o ∧ 2o ∈ 𝑁)) | 
| 34 |   | ontr1 4424 | 
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ On → ((∅
∈ 2o ∧ 2o ∈ 𝑁) → ∅ ∈ 𝑁)) | 
| 35 | 5, 33, 34 | sylc 62 | 
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ∅
∈ 𝑁) | 
| 36 |   | opelxpi 4695 | 
. . . . . . . . . . . 12
⊢ ((∅
∈ 𝑁 ∧ ∅
∈ 1o) → 〈∅, ∅〉 ∈ (𝑁 ×
1o)) | 
| 37 | 35, 11, 36 | sylancl 413 | 
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
〈∅, ∅〉 ∈ (𝑁 × 1o)) | 
| 38 | 37, 16 | eleqtrrdi 2290 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
〈∅, ∅〉 ∈ 𝑇) | 
| 39 |   | f1veqaeq 5816 | 
. . . . . . . . . 10
⊢ ((𝐺:𝑇–1-1→𝒫 1o ∧
(〈1o, ∅〉 ∈ 𝑇 ∧ 〈∅, ∅〉 ∈
𝑇)) → ((𝐺‘〈1o,
∅〉) = (𝐺‘〈∅, ∅〉) →
〈1o, ∅〉 = 〈∅,
∅〉)) | 
| 40 | 1, 17, 38, 39 | syl12anc 1247 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ((𝐺‘〈1o,
∅〉) = (𝐺‘〈∅, ∅〉) →
〈1o, ∅〉 = 〈∅,
∅〉)) | 
| 41 | 31, 40 | mtoi 665 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(𝐺‘〈1o, ∅〉) =
(𝐺‘〈∅,
∅〉)) | 
| 42 | 41 | adantr 276 | 
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) → ¬ (𝐺‘〈1o, ∅〉) =
(𝐺‘〈∅,
∅〉)) | 
| 43 |   | simpr 110 | 
. . . . . . . 8
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) → (𝐺‘〈∅, ∅〉) =
∅) | 
| 44 | 43 | eqeq2d 2208 | 
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) → ((𝐺‘〈1o, ∅〉) =
(𝐺‘〈∅,
∅〉) ↔ (𝐺‘〈1o, ∅〉) =
∅)) | 
| 45 | 42, 44 | mtbid 673 | 
. . . . . 6
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) → ¬ (𝐺‘〈1o, ∅〉) =
∅) | 
| 46 |   | 2on0 6484 | 
. . . . . . . . . . . . . 14
⊢
2o ≠ ∅ | 
| 47 | 46 | nesymi 2413 | 
. . . . . . . . . . . . 13
⊢  ¬
∅ = 2o | 
| 48 | 29, 29 | opth1 4269 | 
. . . . . . . . . . . . 13
⊢
(〈∅, ∅〉 = 〈2o, ∅〉
→ ∅ = 2o) | 
| 49 | 47, 48 | mto 663 | 
. . . . . . . . . . . 12
⊢  ¬
〈∅, ∅〉 = 〈2o,
∅〉 | 
| 50 |   | opelxpi 4695 | 
. . . . . . . . . . . . . . 15
⊢
((2o ∈ 𝑁 ∧ ∅ ∈ 1o) →
〈2o, ∅〉 ∈ (𝑁 × 1o)) | 
| 51 | 6, 11, 50 | sylancl 413 | 
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
〈2o, ∅〉 ∈ (𝑁 × 1o)) | 
| 52 | 51, 16 | eleqtrrdi 2290 | 
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) →
〈2o, ∅〉 ∈ 𝑇) | 
| 53 |   | f1veqaeq 5816 | 
. . . . . . . . . . . . 13
⊢ ((𝐺:𝑇–1-1→𝒫 1o ∧ (〈∅,
∅〉 ∈ 𝑇
∧ 〈2o, ∅〉 ∈ 𝑇)) → ((𝐺‘〈∅, ∅〉) =
(𝐺‘〈2o, ∅〉)
→ 〈∅, ∅〉 = 〈2o,
∅〉)) | 
| 54 | 1, 38, 52, 53 | syl12anc 1247 | 
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ((𝐺‘〈∅,
∅〉) = (𝐺‘〈2o, ∅〉)
→ 〈∅, ∅〉 = 〈2o,
∅〉)) | 
| 55 | 49, 54 | mtoi 665 | 
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(𝐺‘〈∅,
∅〉) = (𝐺‘〈2o,
∅〉)) | 
| 56 | 55 | ad2antrr 488 | 
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ (𝐺‘〈∅, ∅〉) =
(𝐺‘〈2o,
∅〉)) | 
| 57 |   | simplr 528 | 
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → (𝐺‘〈∅, ∅〉) =
∅) | 
| 58 | 57 | eqeq1d 2205 | 
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ((𝐺‘〈∅, ∅〉) =
(𝐺‘〈2o, ∅〉)
↔ ∅ = (𝐺‘〈2o,
∅〉))) | 
| 59 | 56, 58 | mtbid 673 | 
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ ∅ = (𝐺‘〈2o,
∅〉)) | 
| 60 |   | eqcom 2198 | 
. . . . . . . . 9
⊢ (∅
= (𝐺‘〈2o, ∅〉)
↔ (𝐺‘〈2o, ∅〉) =
∅) | 
| 61 | 59, 60 | sylnib 677 | 
. . . . . . . 8
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ (𝐺‘〈2o, ∅〉) =
∅) | 
| 62 |   | 1onn 6578 | 
. . . . . . . . . . . . . . . . . 18
⊢
1o ∈ ω | 
| 63 |   | peano1 4630 | 
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ ω | 
| 64 |   | peano4 4633 | 
. . . . . . . . . . . . . . . . . 18
⊢
((1o ∈ ω ∧ ∅ ∈ ω) → (suc
1o = suc ∅ ↔ 1o = ∅)) | 
| 65 | 62, 63, 64 | mp2an 426 | 
. . . . . . . . . . . . . . . . 17
⊢ (suc
1o = suc ∅ ↔ 1o = ∅) | 
| 66 | 26, 65 | nemtbir 2456 | 
. . . . . . . . . . . . . . . 16
⊢  ¬
suc 1o = suc ∅ | 
| 67 |   | df-2o 6475 | 
. . . . . . . . . . . . . . . . 17
⊢
2o = suc 1o | 
| 68 |   | df-1o 6474 | 
. . . . . . . . . . . . . . . . 17
⊢
1o = suc ∅ | 
| 69 | 67, 68 | eqeq12i 2210 | 
. . . . . . . . . . . . . . . 16
⊢
(2o = 1o ↔ suc 1o = suc
∅) | 
| 70 | 66, 69 | mtbir 672 | 
. . . . . . . . . . . . . . 15
⊢  ¬
2o = 1o | 
| 71 | 70 | neir 2370 | 
. . . . . . . . . . . . . 14
⊢
2o ≠ 1o | 
| 72 | 71 | nesymi 2413 | 
. . . . . . . . . . . . 13
⊢  ¬
1o = 2o | 
| 73 | 28, 29 | opth1 4269 | 
. . . . . . . . . . . . 13
⊢
(〈1o, ∅〉 = 〈2o, ∅〉
→ 1o = 2o) | 
| 74 | 72, 73 | mto 663 | 
. . . . . . . . . . . 12
⊢  ¬
〈1o, ∅〉 = 〈2o,
∅〉 | 
| 75 |   | f1veqaeq 5816 | 
. . . . . . . . . . . . 13
⊢ ((𝐺:𝑇–1-1→𝒫 1o ∧
(〈1o, ∅〉 ∈ 𝑇 ∧ 〈2o, ∅〉
∈ 𝑇)) → ((𝐺‘〈1o,
∅〉) = (𝐺‘〈2o, ∅〉)
→ 〈1o, ∅〉 = 〈2o,
∅〉)) | 
| 76 | 1, 17, 52, 75 | syl12anc 1247 | 
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ((𝐺‘〈1o,
∅〉) = (𝐺‘〈2o, ∅〉)
→ 〈1o, ∅〉 = 〈2o,
∅〉)) | 
| 77 | 74, 76 | mtoi 665 | 
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(𝐺‘〈1o, ∅〉) =
(𝐺‘〈2o,
∅〉)) | 
| 78 | 77 | ad2antrr 488 | 
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ (𝐺‘〈1o, ∅〉) =
(𝐺‘〈2o,
∅〉)) | 
| 79 |   | simpr 110 | 
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → (𝐺‘〈1o, ∅〉) =
{∅}) | 
| 80 | 79 | eqeq1d 2205 | 
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ((𝐺‘〈1o, ∅〉) =
(𝐺‘〈2o, ∅〉)
↔ {∅} = (𝐺‘〈2o,
∅〉))) | 
| 81 | 78, 80 | mtbid 673 | 
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ {∅} = (𝐺‘〈2o,
∅〉)) | 
| 82 |   | eqcom 2198 | 
. . . . . . . . 9
⊢
({∅} = (𝐺‘〈2o, ∅〉)
↔ (𝐺‘〈2o, ∅〉) =
{∅}) | 
| 83 | 81, 82 | sylnib 677 | 
. . . . . . . 8
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ (𝐺‘〈2o, ∅〉) =
{∅}) | 
| 84 | 61, 83 | jca 306 | 
. . . . . . 7
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → (¬ (𝐺‘〈2o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈2o, ∅〉) =
{∅})) | 
| 85 | 3, 52 | ffvelcdmd 5698 | 
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈2o,
∅〉) ∈ 𝒫 1o) | 
| 86 | 85 | elpwid 3616 | 
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈2o,
∅〉) ⊆ 1o) | 
| 87 | 86, 20 | sseqtrdi 3231 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈2o,
∅〉) ⊆ {∅}) | 
| 88 |   | pwtrufal 15642 | 
. . . . . . . . . 10
⊢ ((𝐺‘〈2o,
∅〉) ⊆ {∅} → ¬ ¬ ((𝐺‘〈2o, ∅〉) =
∅ ∨ (𝐺‘〈2o, ∅〉) =
{∅})) | 
| 89 | 87, 88 | syl 14 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
¬ ((𝐺‘〈2o, ∅〉) =
∅ ∨ (𝐺‘〈2o, ∅〉) =
{∅})) | 
| 90 |   | ioran 753 | 
. . . . . . . . 9
⊢ (¬
((𝐺‘〈2o, ∅〉) =
∅ ∨ (𝐺‘〈2o, ∅〉) =
{∅}) ↔ (¬ (𝐺‘〈2o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈2o, ∅〉) =
{∅})) | 
| 91 | 89, 90 | sylnib 677 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(¬ (𝐺‘〈2o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈2o, ∅〉) =
{∅})) | 
| 92 | 91 | ad2antrr 488 | 
. . . . . . 7
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) ∧ (𝐺‘〈1o, ∅〉) =
{∅}) → ¬ (¬ (𝐺‘〈2o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈2o, ∅〉) =
{∅})) | 
| 93 | 84, 92 | pm2.65da 662 | 
. . . . . 6
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) → ¬ (𝐺‘〈1o, ∅〉) =
{∅}) | 
| 94 | 45, 93 | jca 306 | 
. . . . 5
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = ∅) → (¬ (𝐺‘〈1o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈1o, ∅〉) =
{∅})) | 
| 95 | 25, 94 | mtand 666 | 
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(𝐺‘〈∅,
∅〉) = ∅) | 
| 96 |   | eqcom 2198 | 
. . . . . . . . . . 11
⊢ ((𝐺‘〈1o,
∅〉) = (𝐺‘〈2o, ∅〉)
↔ (𝐺‘〈2o, ∅〉) =
(𝐺‘〈1o,
∅〉)) | 
| 97 | 77, 96 | sylnib 677 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(𝐺‘〈2o, ∅〉) =
(𝐺‘〈1o,
∅〉)) | 
| 98 | 97 | ad2antrr 488 | 
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ¬ (𝐺‘〈2o, ∅〉) =
(𝐺‘〈1o,
∅〉)) | 
| 99 |   | simpr 110 | 
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → (𝐺‘〈1o, ∅〉) =
∅) | 
| 100 | 99 | eqeq2d 2208 | 
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ((𝐺‘〈2o, ∅〉) =
(𝐺‘〈1o, ∅〉)
↔ (𝐺‘〈2o, ∅〉) =
∅)) | 
| 101 | 98, 100 | mtbid 673 | 
. . . . . . . 8
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ¬ (𝐺‘〈2o, ∅〉) =
∅) | 
| 102 | 55 | ad2antrr 488 | 
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ¬ (𝐺‘〈∅, ∅〉) =
(𝐺‘〈2o,
∅〉)) | 
| 103 |   | eqcom 2198 | 
. . . . . . . . . 10
⊢ ((𝐺‘〈∅,
∅〉) = (𝐺‘〈2o, ∅〉)
↔ (𝐺‘〈2o, ∅〉) =
(𝐺‘〈∅,
∅〉)) | 
| 104 | 102, 103 | sylnib 677 | 
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ¬ (𝐺‘〈2o, ∅〉) =
(𝐺‘〈∅,
∅〉)) | 
| 105 |   | simplr 528 | 
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → (𝐺‘〈∅, ∅〉) =
{∅}) | 
| 106 | 105 | eqeq2d 2208 | 
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ((𝐺‘〈2o, ∅〉) =
(𝐺‘〈∅,
∅〉) ↔ (𝐺‘〈2o, ∅〉) =
{∅})) | 
| 107 | 104, 106 | mtbid 673 | 
. . . . . . . 8
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ¬ (𝐺‘〈2o, ∅〉) =
{∅}) | 
| 108 | 101, 107 | jca 306 | 
. . . . . . 7
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → (¬ (𝐺‘〈2o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈2o, ∅〉) =
{∅})) | 
| 109 | 91 | ad2antrr 488 | 
. . . . . . 7
⊢
(((((𝑁 ∈
ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) ∧ (𝐺‘〈1o, ∅〉) =
∅) → ¬ (¬ (𝐺‘〈2o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈2o, ∅〉) =
{∅})) | 
| 110 | 108, 109 | pm2.65da 662 | 
. . . . . 6
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) → ¬ (𝐺‘〈1o, ∅〉) =
∅) | 
| 111 | 41 | adantr 276 | 
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) → ¬ (𝐺‘〈1o, ∅〉) =
(𝐺‘〈∅,
∅〉)) | 
| 112 |   | simpr 110 | 
. . . . . . . 8
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) → (𝐺‘〈∅, ∅〉) =
{∅}) | 
| 113 | 112 | eqeq2d 2208 | 
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) → ((𝐺‘〈1o, ∅〉) =
(𝐺‘〈∅,
∅〉) ↔ (𝐺‘〈1o, ∅〉) =
{∅})) | 
| 114 | 111, 113 | mtbid 673 | 
. . . . . 6
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) → ¬ (𝐺‘〈1o, ∅〉) =
{∅}) | 
| 115 | 110, 114 | jca 306 | 
. . . . 5
⊢ ((((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) ∧ (𝐺‘〈∅,
∅〉) = {∅}) → (¬ (𝐺‘〈1o, ∅〉) =
∅ ∧ ¬ (𝐺‘〈1o, ∅〉) =
{∅})) | 
| 116 | 25, 115 | mtand 666 | 
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(𝐺‘〈∅,
∅〉) = {∅}) | 
| 117 | 95, 116 | jca 306 | 
. . 3
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (¬
(𝐺‘〈∅,
∅〉) = ∅ ∧ ¬ (𝐺‘〈∅, ∅〉) =
{∅})) | 
| 118 | 3, 38 | ffvelcdmd 5698 | 
. . . . . . 7
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈∅,
∅〉) ∈ 𝒫 1o) | 
| 119 | 118 | elpwid 3616 | 
. . . . . 6
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈∅,
∅〉) ⊆ 1o) | 
| 120 | 119, 20 | sseqtrdi 3231 | 
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → (𝐺‘〈∅,
∅〉) ⊆ {∅}) | 
| 121 |   | pwtrufal 15642 | 
. . . . 5
⊢ ((𝐺‘〈∅,
∅〉) ⊆ {∅} → ¬ ¬ ((𝐺‘〈∅, ∅〉) =
∅ ∨ (𝐺‘〈∅, ∅〉) =
{∅})) | 
| 122 | 120, 121 | syl 14 | 
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
¬ ((𝐺‘〈∅, ∅〉) =
∅ ∨ (𝐺‘〈∅, ∅〉) =
{∅})) | 
| 123 |   | ioran 753 | 
. . . 4
⊢ (¬
((𝐺‘〈∅,
∅〉) = ∅ ∨ (𝐺‘〈∅, ∅〉) =
{∅}) ↔ (¬ (𝐺‘〈∅, ∅〉) =
∅ ∧ ¬ (𝐺‘〈∅, ∅〉) =
{∅})) | 
| 124 | 122, 123 | sylnib 677 | 
. . 3
⊢ (((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) ∧ 2o
∈ 𝑁) → ¬
(¬ (𝐺‘〈∅, ∅〉) =
∅ ∧ ¬ (𝐺‘〈∅, ∅〉) =
{∅})) | 
| 125 | 117, 124 | pm2.65da 662 | 
. 2
⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → ¬
2o ∈ 𝑁) | 
| 126 |   | 2onn 6579 | 
. . . 4
⊢
2o ∈ ω | 
| 127 |   | nntri1 6554 | 
. . . 4
⊢ ((𝑁 ∈ ω ∧
2o ∈ ω) → (𝑁 ⊆ 2o ↔ ¬
2o ∈ 𝑁)) | 
| 128 | 126, 127 | mpan2 425 | 
. . 3
⊢ (𝑁 ∈ ω → (𝑁 ⊆ 2o ↔
¬ 2o ∈ 𝑁)) | 
| 129 | 128 | adantr 276 | 
. 2
⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → (𝑁 ⊆ 2o ↔
¬ 2o ∈ 𝑁)) | 
| 130 | 125, 129 | mpbird 167 | 
1
⊢ ((𝑁 ∈ ω ∧ 𝐺:𝑇–1-1→𝒫 1o) → 𝑁 ⊆
2o) |