![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neii | GIF version |
Description: Inference associated with df-ne 2252. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neii.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
neii | ⊢ ¬ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | df-ne 2252 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | mpbi 143 | 1 ⊢ ¬ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1287 ≠ wne 2251 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-ne 2252 |
This theorem is referenced by: 2dom 6455 updjudhcoinrg 6693 exmidomni 6719 exmidfodomrlemr 6749 exmidfodomrlemrALT 6750 ine0 7793 inelr 7979 xrltnr 9159 pnfnlt 9166 xrlttri3 9176 nltpnft 9188 3lcm2e6woprm 10862 6lcm4e12 10863 peano3nninf 11253 nninfsellemqall 11263 |
Copyright terms: Public domain | W3C validator |