![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neii | GIF version |
Description: Inference associated with df-ne 2365. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neii.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
neii | ⊢ ¬ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | df-ne 2365 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-ne 2365 |
This theorem is referenced by: 2dom 6859 updjudhcoinrg 7140 omp1eomlem 7153 nninfisol 7192 exmidomni 7201 mkvprop 7217 nninfwlporlemd 7231 nninfwlpoimlemginf 7235 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 exmidaclem 7268 ine0 8413 inelr 8603 xrltnr 9845 pnfnlt 9853 xrlttri3 9863 nltpnft 9880 xrpnfdc 9908 xrmnfdc 9909 xleaddadd 9953 zfz1iso 10912 3lcm2e6woprm 12224 6lcm4e12 12225 m1dvdsndvds 12386 unct 12599 fnpr2ob 12923 fvprif 12926 bj-charfunbi 15303 pwle2 15489 subctctexmid 15491 pw1nct 15493 peano3nninf 15497 nninfsellemqall 15505 nninffeq 15510 |
Copyright terms: Public domain | W3C validator |