![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neii | GIF version |
Description: Inference associated with df-ne 2365. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neii.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
neii | ⊢ ¬ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | df-ne 2365 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-ne 2365 |
This theorem is referenced by: 2dom 6861 updjudhcoinrg 7142 omp1eomlem 7155 nninfisol 7194 exmidomni 7203 mkvprop 7219 nninfwlporlemd 7233 nninfwlpoimlemginf 7237 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 exmidaclem 7270 ine0 8415 inelr 8605 xrltnr 9848 pnfnlt 9856 xrlttri3 9866 nltpnft 9883 xrpnfdc 9911 xrmnfdc 9912 xleaddadd 9956 zfz1iso 10915 3lcm2e6woprm 12227 6lcm4e12 12228 m1dvdsndvds 12389 unct 12602 fnpr2ob 12926 fvprif 12929 2lgslem3 15258 2lgslem4 15260 bj-charfunbi 15373 pwle2 15559 subctctexmid 15561 pw1nct 15563 peano3nninf 15567 nninfsellemqall 15575 nninffeq 15580 |
Copyright terms: Public domain | W3C validator |