| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neii | GIF version | ||
| Description: Inference associated with df-ne 2401. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| neii.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| neii | ⊢ ¬ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | df-ne 2401 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: 2dom 6966 updjudhcoinrg 7256 omp1eomlem 7269 nninfisol 7308 exmidomni 7317 mkvprop 7333 nninfwlporlemd 7347 nninfwlpoimlemginf 7351 exmidfodomrlemr 7388 exmidfodomrlemrALT 7389 exmidaclem 7398 ine0 8548 inelr 8739 xrltnr 9983 pnfnlt 9991 xrlttri3 10001 nltpnft 10018 xrpnfdc 10046 xrmnfdc 10047 xleaddadd 10091 zfz1iso 11071 3lcm2e6woprm 12616 6lcm4e12 12617 m1dvdsndvds 12779 unct 13021 fnpr2ob 13381 fvprif 13384 2lgslem3 15788 2lgslem4 15790 bj-charfunbi 16198 pwle2 16393 subctctexmid 16395 pw1nct 16398 peano3nninf 16403 nninfsellemqall 16411 nninffeq 16416 |
| Copyright terms: Public domain | W3C validator |