Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neii | GIF version |
Description: Inference associated with df-ne 2341. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neii.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
neii | ⊢ ¬ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | df-ne 2341 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ¬ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1348 ≠ wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-ne 2341 |
This theorem is referenced by: 2dom 6783 updjudhcoinrg 7058 omp1eomlem 7071 nninfisol 7109 exmidomni 7118 mkvprop 7134 nninfwlporlemd 7148 nninfwlpoimlemginf 7152 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 exmidaclem 7185 ine0 8313 inelr 8503 xrltnr 9736 pnfnlt 9744 xrlttri3 9754 nltpnft 9771 xrpnfdc 9799 xrmnfdc 9800 xleaddadd 9844 zfz1iso 10776 3lcm2e6woprm 12040 6lcm4e12 12041 m1dvdsndvds 12202 unct 12397 bj-charfunbi 13846 pwle2 14031 subctctexmid 14034 pw1nct 14036 peano3nninf 14040 nninfsellemqall 14048 nninffeq 14053 |
Copyright terms: Public domain | W3C validator |