| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neii | GIF version | ||
| Description: Inference associated with df-ne 2368. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| neii.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| neii | ⊢ ¬ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: 2dom 6864 updjudhcoinrg 7147 omp1eomlem 7160 nninfisol 7199 exmidomni 7208 mkvprop 7224 nninfwlporlemd 7238 nninfwlpoimlemginf 7242 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 exmidaclem 7275 ine0 8420 inelr 8611 xrltnr 9854 pnfnlt 9862 xrlttri3 9872 nltpnft 9889 xrpnfdc 9917 xrmnfdc 9918 xleaddadd 9962 zfz1iso 10933 3lcm2e6woprm 12254 6lcm4e12 12255 m1dvdsndvds 12417 unct 12659 fnpr2ob 12983 fvprif 12986 2lgslem3 15342 2lgslem4 15344 bj-charfunbi 15457 pwle2 15643 subctctexmid 15645 pw1nct 15647 peano3nninf 15651 nninfsellemqall 15659 nninffeq 15664 |
| Copyright terms: Public domain | W3C validator |