| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neii | GIF version | ||
| Description: Inference associated with df-ne 2401. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| neii.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| neii | ⊢ ¬ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | df-ne 2401 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: 2dom 6948 updjudhcoinrg 7236 omp1eomlem 7249 nninfisol 7288 exmidomni 7297 mkvprop 7313 nninfwlporlemd 7327 nninfwlpoimlemginf 7331 exmidfodomrlemr 7368 exmidfodomrlemrALT 7369 exmidaclem 7378 ine0 8528 inelr 8719 xrltnr 9963 pnfnlt 9971 xrlttri3 9981 nltpnft 9998 xrpnfdc 10026 xrmnfdc 10027 xleaddadd 10071 zfz1iso 11050 3lcm2e6woprm 12594 6lcm4e12 12595 m1dvdsndvds 12757 unct 12999 fnpr2ob 13359 fvprif 13362 2lgslem3 15765 2lgslem4 15767 bj-charfunbi 16104 pwle2 16295 subctctexmid 16297 pw1nct 16300 peano3nninf 16304 nninfsellemqall 16312 nninffeq 16317 |
| Copyright terms: Public domain | W3C validator |