![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neii | GIF version |
Description: Inference associated with df-ne 2358. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neii.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
neii | ⊢ ¬ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | df-ne 2358 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1363 ≠ wne 2357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-ne 2358 |
This theorem is referenced by: 2dom 6818 updjudhcoinrg 7093 omp1eomlem 7106 nninfisol 7144 exmidomni 7153 mkvprop 7169 nninfwlporlemd 7183 nninfwlpoimlemginf 7187 exmidfodomrlemr 7214 exmidfodomrlemrALT 7215 exmidaclem 7220 ine0 8364 inelr 8554 xrltnr 9792 pnfnlt 9800 xrlttri3 9810 nltpnft 9827 xrpnfdc 9855 xrmnfdc 9856 xleaddadd 9900 zfz1iso 10834 3lcm2e6woprm 12099 6lcm4e12 12100 m1dvdsndvds 12261 unct 12456 fnpr2ob 12777 fvprif 12780 bj-charfunbi 14834 pwle2 15020 subctctexmid 15022 pw1nct 15024 peano3nninf 15028 nninfsellemqall 15036 nninffeq 15041 |
Copyright terms: Public domain | W3C validator |