ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neii GIF version

Theorem neii 2402
Description: Inference associated with df-ne 2401. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
neii.1 𝐴𝐵
Assertion
Ref Expression
neii ¬ 𝐴 = 𝐵

Proof of Theorem neii
StepHypRef Expression
1 neii.1 . 2 𝐴𝐵
2 df-ne 2401 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2mpbi 145 1 ¬ 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1395  wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-ne 2401
This theorem is referenced by:  2dom  6966  updjudhcoinrg  7256  omp1eomlem  7269  nninfisol  7308  exmidomni  7317  mkvprop  7333  nninfwlporlemd  7347  nninfwlpoimlemginf  7351  exmidfodomrlemr  7388  exmidfodomrlemrALT  7389  exmidaclem  7398  ine0  8548  inelr  8739  xrltnr  9983  pnfnlt  9991  xrlttri3  10001  nltpnft  10018  xrpnfdc  10046  xrmnfdc  10047  xleaddadd  10091  zfz1iso  11071  3lcm2e6woprm  12616  6lcm4e12  12617  m1dvdsndvds  12779  unct  13021  fnpr2ob  13381  fvprif  13384  2lgslem3  15788  2lgslem4  15790  bj-charfunbi  16198  pwle2  16393  subctctexmid  16395  pw1nct  16398  peano3nninf  16403  nninfsellemqall  16411  nninffeq  16416
  Copyright terms: Public domain W3C validator