Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neii | GIF version |
Description: Inference associated with df-ne 2336. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neii.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
neii | ⊢ ¬ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | df-ne 2336 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ¬ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1343 ≠ wne 2335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-ne 2336 |
This theorem is referenced by: 2dom 6767 updjudhcoinrg 7042 omp1eomlem 7055 nninfisol 7093 exmidomni 7102 mkvprop 7118 exmidfodomrlemr 7154 exmidfodomrlemrALT 7155 exmidaclem 7160 ine0 8288 inelr 8478 xrltnr 9711 pnfnlt 9719 xrlttri3 9729 nltpnft 9746 xrpnfdc 9774 xrmnfdc 9775 xleaddadd 9819 zfz1iso 10750 3lcm2e6woprm 12014 6lcm4e12 12015 m1dvdsndvds 12176 unct 12371 bj-charfunbi 13653 pwle2 13838 subctctexmid 13841 pw1nct 13843 peano3nninf 13847 nninfsellemqall 13855 nninffeq 13860 |
Copyright terms: Public domain | W3C validator |