ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neii GIF version

Theorem neii 2359
Description: Inference associated with df-ne 2358. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
neii.1 𝐴𝐵
Assertion
Ref Expression
neii ¬ 𝐴 = 𝐵

Proof of Theorem neii
StepHypRef Expression
1 neii.1 . 2 𝐴𝐵
2 df-ne 2358 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2mpbi 145 1 ¬ 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1363  wne 2357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-ne 2358
This theorem is referenced by:  2dom  6818  updjudhcoinrg  7093  omp1eomlem  7106  nninfisol  7144  exmidomni  7153  mkvprop  7169  nninfwlporlemd  7183  nninfwlpoimlemginf  7187  exmidfodomrlemr  7214  exmidfodomrlemrALT  7215  exmidaclem  7220  ine0  8364  inelr  8554  xrltnr  9792  pnfnlt  9800  xrlttri3  9810  nltpnft  9827  xrpnfdc  9855  xrmnfdc  9856  xleaddadd  9900  zfz1iso  10834  3lcm2e6woprm  12099  6lcm4e12  12100  m1dvdsndvds  12261  unct  12456  fnpr2ob  12777  fvprif  12780  bj-charfunbi  14834  pwle2  15020  subctctexmid  15022  pw1nct  15024  peano3nninf  15028  nninfsellemqall  15036  nninffeq  15041
  Copyright terms: Public domain W3C validator