| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neii | GIF version | ||
| Description: Inference associated with df-ne 2368. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| neii.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| neii | ⊢ ¬ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: 2dom 6873 updjudhcoinrg 7156 omp1eomlem 7169 nninfisol 7208 exmidomni 7217 mkvprop 7233 nninfwlporlemd 7247 nninfwlpoimlemginf 7251 exmidfodomrlemr 7283 exmidfodomrlemrALT 7284 exmidaclem 7293 ine0 8439 inelr 8630 xrltnr 9873 pnfnlt 9881 xrlttri3 9891 nltpnft 9908 xrpnfdc 9936 xrmnfdc 9937 xleaddadd 9981 zfz1iso 10952 3lcm2e6woprm 12281 6lcm4e12 12282 m1dvdsndvds 12444 unct 12686 fnpr2ob 13044 fvprif 13047 2lgslem3 15450 2lgslem4 15452 bj-charfunbi 15565 pwle2 15753 subctctexmid 15755 pw1nct 15758 peano3nninf 15762 nninfsellemqall 15770 nninffeq 15775 |
| Copyright terms: Public domain | W3C validator |