| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neii | GIF version | ||
| Description: Inference associated with df-ne 2378. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| neii.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| neii | ⊢ ¬ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | df-ne 2378 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-ne 2378 |
| This theorem is referenced by: 2dom 6908 updjudhcoinrg 7195 omp1eomlem 7208 nninfisol 7247 exmidomni 7256 mkvprop 7272 nninfwlporlemd 7286 nninfwlpoimlemginf 7290 exmidfodomrlemr 7323 exmidfodomrlemrALT 7324 exmidaclem 7333 ine0 8479 inelr 8670 xrltnr 9914 pnfnlt 9922 xrlttri3 9932 nltpnft 9949 xrpnfdc 9977 xrmnfdc 9978 xleaddadd 10022 zfz1iso 10999 3lcm2e6woprm 12458 6lcm4e12 12459 m1dvdsndvds 12621 unct 12863 fnpr2ob 13222 fvprif 13225 2lgslem3 15628 2lgslem4 15630 bj-charfunbi 15861 pwle2 16050 subctctexmid 16052 pw1nct 16055 peano3nninf 16059 nninfsellemqall 16067 nninffeq 16072 |
| Copyright terms: Public domain | W3C validator |