| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1ne1 | GIF version | ||
| Description: The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| pw1ne1 | ⊢ 𝒫 1o ≠ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1on 7357 | . . . 4 ⊢ 𝒫 1o ∈ On | |
| 2 | 1 | onirri 4599 | . . 3 ⊢ ¬ 𝒫 1o ∈ 𝒫 1o |
| 3 | df1o2 6528 | . . . . 5 ⊢ 1o = {∅} | |
| 4 | pwpw0ss 3851 | . . . . . . . 8 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
| 5 | 3 | pweqi 3625 | . . . . . . . 8 ⊢ 𝒫 1o = 𝒫 {∅} |
| 6 | 4, 5 | sseqtrri 3232 | . . . . . . 7 ⊢ {∅, {∅}} ⊆ 𝒫 1o |
| 7 | 0ex 4179 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 8 | p0ex 4240 | . . . . . . . 8 ⊢ {∅} ∈ V | |
| 9 | 7, 8 | prss 3795 | . . . . . . 7 ⊢ ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o) |
| 10 | 6, 9 | mpbir 146 | . . . . . 6 ⊢ (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) |
| 11 | 10 | simpri 113 | . . . . 5 ⊢ {∅} ∈ 𝒫 1o |
| 12 | 3, 11 | eqeltri 2279 | . . . 4 ⊢ 1o ∈ 𝒫 1o |
| 13 | eleq1 2269 | . . . 4 ⊢ (𝒫 1o = 1o → (𝒫 1o ∈ 𝒫 1o ↔ 1o ∈ 𝒫 1o)) | |
| 14 | 12, 13 | mpbiri 168 | . . 3 ⊢ (𝒫 1o = 1o → 𝒫 1o ∈ 𝒫 1o) |
| 15 | 2, 14 | mto 664 | . 2 ⊢ ¬ 𝒫 1o = 1o |
| 16 | 15 | neir 2380 | 1 ⊢ 𝒫 1o ≠ 1o |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ⊆ wss 3170 ∅c0 3464 𝒫 cpw 3621 {csn 3638 {cpr 3639 1oc1o 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 df-1o 6515 |
| This theorem is referenced by: pw1nel3 7362 sucpw1nel3 7364 |
| Copyright terms: Public domain | W3C validator |