Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1ne1 | GIF version |
Description: The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
pw1ne1 | ⊢ 𝒫 1o ≠ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1on 7182 | . . . 4 ⊢ 𝒫 1o ∈ On | |
2 | 1 | onirri 4520 | . . 3 ⊢ ¬ 𝒫 1o ∈ 𝒫 1o |
3 | df1o2 6397 | . . . . 5 ⊢ 1o = {∅} | |
4 | pwpw0ss 3784 | . . . . . . . 8 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
5 | 3 | pweqi 3563 | . . . . . . . 8 ⊢ 𝒫 1o = 𝒫 {∅} |
6 | 4, 5 | sseqtrri 3177 | . . . . . . 7 ⊢ {∅, {∅}} ⊆ 𝒫 1o |
7 | 0ex 4109 | . . . . . . . 8 ⊢ ∅ ∈ V | |
8 | p0ex 4167 | . . . . . . . 8 ⊢ {∅} ∈ V | |
9 | 7, 8 | prss 3729 | . . . . . . 7 ⊢ ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o) |
10 | 6, 9 | mpbir 145 | . . . . . 6 ⊢ (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) |
11 | 10 | simpri 112 | . . . . 5 ⊢ {∅} ∈ 𝒫 1o |
12 | 3, 11 | eqeltri 2239 | . . . 4 ⊢ 1o ∈ 𝒫 1o |
13 | eleq1 2229 | . . . 4 ⊢ (𝒫 1o = 1o → (𝒫 1o ∈ 𝒫 1o ↔ 1o ∈ 𝒫 1o)) | |
14 | 12, 13 | mpbiri 167 | . . 3 ⊢ (𝒫 1o = 1o → 𝒫 1o ∈ 𝒫 1o) |
15 | 2, 14 | mto 652 | . 2 ⊢ ¬ 𝒫 1o = 1o |
16 | 15 | neir 2339 | 1 ⊢ 𝒫 1o ≠ 1o |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ⊆ wss 3116 ∅c0 3409 𝒫 cpw 3559 {csn 3576 {cpr 3577 1oc1o 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-1o 6384 |
This theorem is referenced by: pw1nel3 7187 sucpw1nel3 7189 |
Copyright terms: Public domain | W3C validator |