| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1ne1 | GIF version | ||
| Description: The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| pw1ne1 | ⊢ 𝒫 1o ≠ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1on 7407 | . . . 4 ⊢ 𝒫 1o ∈ On | |
| 2 | 1 | onirri 4634 | . . 3 ⊢ ¬ 𝒫 1o ∈ 𝒫 1o |
| 3 | df1o2 6573 | . . . . 5 ⊢ 1o = {∅} | |
| 4 | pwpw0ss 3882 | . . . . . . . 8 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
| 5 | 3 | pweqi 3653 | . . . . . . . 8 ⊢ 𝒫 1o = 𝒫 {∅} |
| 6 | 4, 5 | sseqtrri 3259 | . . . . . . 7 ⊢ {∅, {∅}} ⊆ 𝒫 1o |
| 7 | 0ex 4210 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 8 | p0ex 4271 | . . . . . . . 8 ⊢ {∅} ∈ V | |
| 9 | 7, 8 | prss 3823 | . . . . . . 7 ⊢ ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o) |
| 10 | 6, 9 | mpbir 146 | . . . . . 6 ⊢ (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) |
| 11 | 10 | simpri 113 | . . . . 5 ⊢ {∅} ∈ 𝒫 1o |
| 12 | 3, 11 | eqeltri 2302 | . . . 4 ⊢ 1o ∈ 𝒫 1o |
| 13 | eleq1 2292 | . . . 4 ⊢ (𝒫 1o = 1o → (𝒫 1o ∈ 𝒫 1o ↔ 1o ∈ 𝒫 1o)) | |
| 14 | 12, 13 | mpbiri 168 | . . 3 ⊢ (𝒫 1o = 1o → 𝒫 1o ∈ 𝒫 1o) |
| 15 | 2, 14 | mto 666 | . 2 ⊢ ¬ 𝒫 1o = 1o |
| 16 | 15 | neir 2403 | 1 ⊢ 𝒫 1o ≠ 1o |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ⊆ wss 3197 ∅c0 3491 𝒫 cpw 3649 {csn 3666 {cpr 3667 1oc1o 6553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 df-1o 6560 |
| This theorem is referenced by: pw1nel3 7412 sucpw1nel3 7414 |
| Copyright terms: Public domain | W3C validator |