![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1ne1 | GIF version |
Description: The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
pw1ne1 | ⊢ 𝒫 1o ≠ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1on 7286 | . . . 4 ⊢ 𝒫 1o ∈ On | |
2 | 1 | onirri 4575 | . . 3 ⊢ ¬ 𝒫 1o ∈ 𝒫 1o |
3 | df1o2 6482 | . . . . 5 ⊢ 1o = {∅} | |
4 | pwpw0ss 3830 | . . . . . . . 8 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
5 | 3 | pweqi 3605 | . . . . . . . 8 ⊢ 𝒫 1o = 𝒫 {∅} |
6 | 4, 5 | sseqtrri 3214 | . . . . . . 7 ⊢ {∅, {∅}} ⊆ 𝒫 1o |
7 | 0ex 4156 | . . . . . . . 8 ⊢ ∅ ∈ V | |
8 | p0ex 4217 | . . . . . . . 8 ⊢ {∅} ∈ V | |
9 | 7, 8 | prss 3774 | . . . . . . 7 ⊢ ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o) |
10 | 6, 9 | mpbir 146 | . . . . . 6 ⊢ (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) |
11 | 10 | simpri 113 | . . . . 5 ⊢ {∅} ∈ 𝒫 1o |
12 | 3, 11 | eqeltri 2266 | . . . 4 ⊢ 1o ∈ 𝒫 1o |
13 | eleq1 2256 | . . . 4 ⊢ (𝒫 1o = 1o → (𝒫 1o ∈ 𝒫 1o ↔ 1o ∈ 𝒫 1o)) | |
14 | 12, 13 | mpbiri 168 | . . 3 ⊢ (𝒫 1o = 1o → 𝒫 1o ∈ 𝒫 1o) |
15 | 2, 14 | mto 663 | . 2 ⊢ ¬ 𝒫 1o = 1o |
16 | 15 | neir 2367 | 1 ⊢ 𝒫 1o ≠ 1o |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ⊆ wss 3153 ∅c0 3446 𝒫 cpw 3601 {csn 3618 {cpr 3619 1oc1o 6462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-1o 6469 |
This theorem is referenced by: pw1nel3 7291 sucpw1nel3 7293 |
Copyright terms: Public domain | W3C validator |