ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne1 GIF version

Theorem pw1ne1 7206
Description: The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne1 𝒫 1o ≠ 1o

Proof of Theorem pw1ne1
StepHypRef Expression
1 pw1on 7203 . . . 4 𝒫 1o ∈ On
21onirri 4527 . . 3 ¬ 𝒫 1o ∈ 𝒫 1o
3 df1o2 6408 . . . . 5 1o = {∅}
4 pwpw0ss 3791 . . . . . . . 8 {∅, {∅}} ⊆ 𝒫 {∅}
53pweqi 3570 . . . . . . . 8 𝒫 1o = 𝒫 {∅}
64, 5sseqtrri 3182 . . . . . . 7 {∅, {∅}} ⊆ 𝒫 1o
7 0ex 4116 . . . . . . . 8 ∅ ∈ V
8 p0ex 4174 . . . . . . . 8 {∅} ∈ V
97, 8prss 3736 . . . . . . 7 ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o)
106, 9mpbir 145 . . . . . 6 (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o)
1110simpri 112 . . . . 5 {∅} ∈ 𝒫 1o
123, 11eqeltri 2243 . . . 4 1o ∈ 𝒫 1o
13 eleq1 2233 . . . 4 (𝒫 1o = 1o → (𝒫 1o ∈ 𝒫 1o ↔ 1o ∈ 𝒫 1o))
1412, 13mpbiri 167 . . 3 (𝒫 1o = 1o → 𝒫 1o ∈ 𝒫 1o)
152, 14mto 657 . 2 ¬ 𝒫 1o = 1o
1615neir 2343 1 𝒫 1o ≠ 1o
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wcel 2141  wne 2340  wss 3121  c0 3414  𝒫 cpw 3566  {csn 3583  {cpr 3584  1oc1o 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-1o 6395
This theorem is referenced by:  pw1nel3  7208  sucpw1nel3  7210
  Copyright terms: Public domain W3C validator