Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1ne1 | GIF version |
Description: The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
pw1ne1 | ⊢ 𝒫 1o ≠ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1on 7203 | . . . 4 ⊢ 𝒫 1o ∈ On | |
2 | 1 | onirri 4527 | . . 3 ⊢ ¬ 𝒫 1o ∈ 𝒫 1o |
3 | df1o2 6408 | . . . . 5 ⊢ 1o = {∅} | |
4 | pwpw0ss 3791 | . . . . . . . 8 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
5 | 3 | pweqi 3570 | . . . . . . . 8 ⊢ 𝒫 1o = 𝒫 {∅} |
6 | 4, 5 | sseqtrri 3182 | . . . . . . 7 ⊢ {∅, {∅}} ⊆ 𝒫 1o |
7 | 0ex 4116 | . . . . . . . 8 ⊢ ∅ ∈ V | |
8 | p0ex 4174 | . . . . . . . 8 ⊢ {∅} ∈ V | |
9 | 7, 8 | prss 3736 | . . . . . . 7 ⊢ ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o) |
10 | 6, 9 | mpbir 145 | . . . . . 6 ⊢ (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) |
11 | 10 | simpri 112 | . . . . 5 ⊢ {∅} ∈ 𝒫 1o |
12 | 3, 11 | eqeltri 2243 | . . . 4 ⊢ 1o ∈ 𝒫 1o |
13 | eleq1 2233 | . . . 4 ⊢ (𝒫 1o = 1o → (𝒫 1o ∈ 𝒫 1o ↔ 1o ∈ 𝒫 1o)) | |
14 | 12, 13 | mpbiri 167 | . . 3 ⊢ (𝒫 1o = 1o → 𝒫 1o ∈ 𝒫 1o) |
15 | 2, 14 | mto 657 | . 2 ⊢ ¬ 𝒫 1o = 1o |
16 | 15 | neir 2343 | 1 ⊢ 𝒫 1o ≠ 1o |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 ⊆ wss 3121 ∅c0 3414 𝒫 cpw 3566 {csn 3583 {cpr 3584 1oc1o 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-1o 6395 |
This theorem is referenced by: pw1nel3 7208 sucpw1nel3 7210 |
Copyright terms: Public domain | W3C validator |