| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1ne1 | GIF version | ||
| Description: The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| pw1ne1 | ⊢ 𝒫 1o ≠ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1on 7293 | . . . 4 ⊢ 𝒫 1o ∈ On | |
| 2 | 1 | onirri 4579 | . . 3 ⊢ ¬ 𝒫 1o ∈ 𝒫 1o |
| 3 | df1o2 6487 | . . . . 5 ⊢ 1o = {∅} | |
| 4 | pwpw0ss 3834 | . . . . . . . 8 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
| 5 | 3 | pweqi 3609 | . . . . . . . 8 ⊢ 𝒫 1o = 𝒫 {∅} |
| 6 | 4, 5 | sseqtrri 3218 | . . . . . . 7 ⊢ {∅, {∅}} ⊆ 𝒫 1o |
| 7 | 0ex 4160 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 8 | p0ex 4221 | . . . . . . . 8 ⊢ {∅} ∈ V | |
| 9 | 7, 8 | prss 3778 | . . . . . . 7 ⊢ ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o) |
| 10 | 6, 9 | mpbir 146 | . . . . . 6 ⊢ (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) |
| 11 | 10 | simpri 113 | . . . . 5 ⊢ {∅} ∈ 𝒫 1o |
| 12 | 3, 11 | eqeltri 2269 | . . . 4 ⊢ 1o ∈ 𝒫 1o |
| 13 | eleq1 2259 | . . . 4 ⊢ (𝒫 1o = 1o → (𝒫 1o ∈ 𝒫 1o ↔ 1o ∈ 𝒫 1o)) | |
| 14 | 12, 13 | mpbiri 168 | . . 3 ⊢ (𝒫 1o = 1o → 𝒫 1o ∈ 𝒫 1o) |
| 15 | 2, 14 | mto 663 | . 2 ⊢ ¬ 𝒫 1o = 1o |
| 16 | 15 | neir 2370 | 1 ⊢ 𝒫 1o ≠ 1o |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ⊆ wss 3157 ∅c0 3450 𝒫 cpw 3605 {csn 3622 {cpr 3623 1oc1o 6467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 |
| This theorem is referenced by: pw1nel3 7298 sucpw1nel3 7300 |
| Copyright terms: Public domain | W3C validator |