ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne1 GIF version

Theorem pw1ne1 7289
Description: The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne1 𝒫 1o ≠ 1o

Proof of Theorem pw1ne1
StepHypRef Expression
1 pw1on 7286 . . . 4 𝒫 1o ∈ On
21onirri 4575 . . 3 ¬ 𝒫 1o ∈ 𝒫 1o
3 df1o2 6482 . . . . 5 1o = {∅}
4 pwpw0ss 3830 . . . . . . . 8 {∅, {∅}} ⊆ 𝒫 {∅}
53pweqi 3605 . . . . . . . 8 𝒫 1o = 𝒫 {∅}
64, 5sseqtrri 3214 . . . . . . 7 {∅, {∅}} ⊆ 𝒫 1o
7 0ex 4156 . . . . . . . 8 ∅ ∈ V
8 p0ex 4217 . . . . . . . 8 {∅} ∈ V
97, 8prss 3774 . . . . . . 7 ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o)
106, 9mpbir 146 . . . . . 6 (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o)
1110simpri 113 . . . . 5 {∅} ∈ 𝒫 1o
123, 11eqeltri 2266 . . . 4 1o ∈ 𝒫 1o
13 eleq1 2256 . . . 4 (𝒫 1o = 1o → (𝒫 1o ∈ 𝒫 1o ↔ 1o ∈ 𝒫 1o))
1412, 13mpbiri 168 . . 3 (𝒫 1o = 1o → 𝒫 1o ∈ 𝒫 1o)
152, 14mto 663 . 2 ¬ 𝒫 1o = 1o
1615neir 2367 1 𝒫 1o ≠ 1o
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  wne 2364  wss 3153  c0 3446  𝒫 cpw 3601  {csn 3618  {cpr 3619  1oc1o 6462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-1o 6469
This theorem is referenced by:  pw1nel3  7291  sucpw1nel3  7293
  Copyright terms: Public domain W3C validator