Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1ne1 | GIF version |
Description: The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
pw1ne1 | ⊢ 𝒫 1o ≠ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1on 7155 | . . . 4 ⊢ 𝒫 1o ∈ On | |
2 | 1 | onirri 4501 | . . 3 ⊢ ¬ 𝒫 1o ∈ 𝒫 1o |
3 | df1o2 6373 | . . . . 5 ⊢ 1o = {∅} | |
4 | pwpw0ss 3767 | . . . . . . . 8 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
5 | 3 | pweqi 3547 | . . . . . . . 8 ⊢ 𝒫 1o = 𝒫 {∅} |
6 | 4, 5 | sseqtrri 3163 | . . . . . . 7 ⊢ {∅, {∅}} ⊆ 𝒫 1o |
7 | 0ex 4091 | . . . . . . . 8 ⊢ ∅ ∈ V | |
8 | p0ex 4149 | . . . . . . . 8 ⊢ {∅} ∈ V | |
9 | 7, 8 | prss 3712 | . . . . . . 7 ⊢ ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o) |
10 | 6, 9 | mpbir 145 | . . . . . 6 ⊢ (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) |
11 | 10 | simpri 112 | . . . . 5 ⊢ {∅} ∈ 𝒫 1o |
12 | 3, 11 | eqeltri 2230 | . . . 4 ⊢ 1o ∈ 𝒫 1o |
13 | eleq1 2220 | . . . 4 ⊢ (𝒫 1o = 1o → (𝒫 1o ∈ 𝒫 1o ↔ 1o ∈ 𝒫 1o)) | |
14 | 12, 13 | mpbiri 167 | . . 3 ⊢ (𝒫 1o = 1o → 𝒫 1o ∈ 𝒫 1o) |
15 | 2, 14 | mto 652 | . 2 ⊢ ¬ 𝒫 1o = 1o |
16 | 15 | neir 2330 | 1 ⊢ 𝒫 1o ≠ 1o |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1335 ∈ wcel 2128 ≠ wne 2327 ⊆ wss 3102 ∅c0 3394 𝒫 cpw 3543 {csn 3560 {cpr 3561 1oc1o 6353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-tr 4063 df-iord 4326 df-on 4328 df-suc 4331 df-1o 6360 |
This theorem is referenced by: pw1nel3 7160 sucpw1nel3 7162 |
Copyright terms: Public domain | W3C validator |