ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne1 GIF version

Theorem pw1ne1 7410
Description: The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne1 𝒫 1o ≠ 1o

Proof of Theorem pw1ne1
StepHypRef Expression
1 pw1on 7407 . . . 4 𝒫 1o ∈ On
21onirri 4634 . . 3 ¬ 𝒫 1o ∈ 𝒫 1o
3 df1o2 6573 . . . . 5 1o = {∅}
4 pwpw0ss 3882 . . . . . . . 8 {∅, {∅}} ⊆ 𝒫 {∅}
53pweqi 3653 . . . . . . . 8 𝒫 1o = 𝒫 {∅}
64, 5sseqtrri 3259 . . . . . . 7 {∅, {∅}} ⊆ 𝒫 1o
7 0ex 4210 . . . . . . . 8 ∅ ∈ V
8 p0ex 4271 . . . . . . . 8 {∅} ∈ V
97, 8prss 3823 . . . . . . 7 ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o)
106, 9mpbir 146 . . . . . 6 (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o)
1110simpri 113 . . . . 5 {∅} ∈ 𝒫 1o
123, 11eqeltri 2302 . . . 4 1o ∈ 𝒫 1o
13 eleq1 2292 . . . 4 (𝒫 1o = 1o → (𝒫 1o ∈ 𝒫 1o ↔ 1o ∈ 𝒫 1o))
1412, 13mpbiri 168 . . 3 (𝒫 1o = 1o → 𝒫 1o ∈ 𝒫 1o)
152, 14mto 666 . 2 ¬ 𝒫 1o = 1o
1615neir 2403 1 𝒫 1o ≠ 1o
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  wne 2400  wss 3197  c0 3491  𝒫 cpw 3649  {csn 3666  {cpr 3667  1oc1o 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-1o 6560
This theorem is referenced by:  pw1nel3  7412  sucpw1nel3  7414
  Copyright terms: Public domain W3C validator