Step | Hyp | Ref
| Expression |
1 | | elpri 3606 |
. . . . . . . . . 10
⊢ (𝑟 ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑})) |
2 | | exmidonfinlem.a |
. . . . . . . . . 10
⊢ 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} |
3 | 1, 2 | eleq2s 2265 |
. . . . . . . . 9
⊢ (𝑟 ∈ 𝐴 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑})) |
4 | | eleq2 2234 |
. . . . . . . . . . . 12
⊢ (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → (𝑠 ∈ 𝑟 ↔ 𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑})) |
5 | 4 | biimpcd 158 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ 𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑})) |
6 | | elrabi 2883 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 ∈ {∅}) |
7 | | velsn 3600 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ {∅} ↔ 𝑠 = ∅) |
8 | 6, 7 | sylib 121 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 = ∅) |
9 | | biidd 171 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑠 → (𝜑 ↔ 𝜑)) |
10 | 9 | elrab 2886 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ (𝑠 ∈ {∅} ∧ 𝜑)) |
11 | 10 | simprbi 273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝜑) |
12 | 11 | notnotd 625 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ¬ ¬ 𝜑) |
13 | | 0ex 4116 |
. . . . . . . . . . . . . . . . 17
⊢ ∅
∈ V |
14 | 13 | snm 3703 |
. . . . . . . . . . . . . . . 16
⊢
∃𝑤 𝑤 ∈
{∅} |
15 | | r19.3rmv 3505 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑤 𝑤 ∈ {∅} → (¬
¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬
𝜑)) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (¬
¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬
𝜑) |
17 | 12, 16 | sylib 121 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ∀𝑥 ∈ {∅} ¬ ¬ 𝜑) |
18 | | rabeq0 3444 |
. . . . . . . . . . . . . 14
⊢ ({𝑥 ∈ {∅} ∣ ¬
𝜑} = ∅ ↔
∀𝑥 ∈ {∅}
¬ ¬ 𝜑) |
19 | 17, 18 | sylibr 133 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → {𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅) |
20 | 8, 19 | eqtr4d 2206 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) |
21 | | p0ex 4174 |
. . . . . . . . . . . . . . 15
⊢ {∅}
∈ V |
22 | 21 | rabex 4133 |
. . . . . . . . . . . . . 14
⊢ {𝑥 ∈ {∅} ∣ ¬
𝜑} ∈ V |
23 | 22 | prid2 3690 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∈ {∅} ∣ ¬
𝜑} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} |
24 | 23, 2 | eleqtrri 2246 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ {∅} ∣ ¬
𝜑} ∈ 𝐴 |
25 | 20, 24 | eqeltrdi 2261 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 ∈ 𝐴) |
26 | 5, 25 | syl6 33 |
. . . . . . . . . 10
⊢ (𝑠 ∈ 𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 ∈ 𝐴)) |
27 | | eleq2 2234 |
. . . . . . . . . . . 12
⊢ (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (𝑠 ∈ 𝑟 ↔ 𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑})) |
28 | 27 | biimpcd 158 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ 𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑})) |
29 | | elrabi 2883 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 ∈ {∅}) |
30 | 29, 7 | sylib 121 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 = ∅) |
31 | | biidd 171 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑠 → (¬ 𝜑 ↔ ¬ 𝜑)) |
32 | 31 | elrab 2886 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (𝑠 ∈ {∅} ∧ ¬ 𝜑)) |
33 | 32 | simprbi 273 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑) |
34 | | r19.3rmv 3505 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑤 𝑤 ∈ {∅} → (¬
𝜑 ↔ ∀𝑥 ∈ {∅} ¬ 𝜑)) |
35 | 14, 34 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝜑 ↔ ∀𝑥 ∈ {∅} ¬ 𝜑) |
36 | 33, 35 | sylib 121 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ∀𝑥 ∈ {∅} ¬ 𝜑) |
37 | | rabeq0 3444 |
. . . . . . . . . . . . . 14
⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ 𝜑) |
38 | 36, 37 | sylibr 133 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → {𝑥 ∈ {∅} ∣ 𝜑} = ∅) |
39 | 30, 38 | eqtr4d 2206 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 = {𝑥 ∈ {∅} ∣ 𝜑}) |
40 | 21 | rabex 4133 |
. . . . . . . . . . . . . 14
⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ V |
41 | 40 | prid1 3689 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} |
42 | 41, 2 | eleqtrri 2246 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ 𝐴 |
43 | 39, 42 | eqeltrdi 2261 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 ∈ 𝐴) |
44 | 28, 43 | syl6 33 |
. . . . . . . . . 10
⊢ (𝑠 ∈ 𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 ∈ 𝐴)) |
45 | 26, 44 | jaod 712 |
. . . . . . . . 9
⊢ (𝑠 ∈ 𝑟 → ((𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → 𝑠 ∈ 𝐴)) |
46 | 3, 45 | mpan9 279 |
. . . . . . . 8
⊢ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ 𝐴) |
47 | 46 | rgen2 2556 |
. . . . . . 7
⊢
∀𝑟 ∈
𝐴 ∀𝑠 ∈ 𝑟 𝑠 ∈ 𝐴 |
48 | | dftr5 4090 |
. . . . . . 7
⊢ (Tr 𝐴 ↔ ∀𝑟 ∈ 𝐴 ∀𝑠 ∈ 𝑟 𝑠 ∈ 𝐴) |
49 | 47, 48 | mpbir 145 |
. . . . . 6
⊢ Tr 𝐴 |
50 | | elpri 3606 |
. . . . . . . . 9
⊢ (𝑧 ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑})) |
51 | 50, 2 | eleq2s 2265 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐴 → (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑})) |
52 | | ordtriexmidlem 4503 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ On |
53 | 52 | ontrci 4412 |
. . . . . . . . . 10
⊢ Tr {𝑥 ∈ {∅} ∣ 𝜑} |
54 | | treq 4093 |
. . . . . . . . . 10
⊢ (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} → (Tr 𝑧 ↔ Tr {𝑥 ∈ {∅} ∣ 𝜑})) |
55 | 53, 54 | mpbiri 167 |
. . . . . . . . 9
⊢ (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} → Tr 𝑧) |
56 | | ordtriexmidlem 4503 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ {∅} ∣ ¬
𝜑} ∈ On |
57 | 56 | ontrci 4412 |
. . . . . . . . . 10
⊢ Tr {𝑥 ∈ {∅} ∣ ¬
𝜑} |
58 | | treq 4093 |
. . . . . . . . . 10
⊢ (𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (Tr 𝑧 ↔ Tr {𝑥 ∈ {∅} ∣ ¬ 𝜑})) |
59 | 57, 58 | mpbiri 167 |
. . . . . . . . 9
⊢ (𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → Tr 𝑧) |
60 | 55, 59 | jaoi 711 |
. . . . . . . 8
⊢ ((𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → Tr 𝑧) |
61 | 51, 60 | syl 14 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → Tr 𝑧) |
62 | 61 | rgen 2523 |
. . . . . 6
⊢
∀𝑧 ∈
𝐴 Tr 𝑧 |
63 | | dford3 4352 |
. . . . . 6
⊢ (Ord
𝐴 ↔ (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 Tr 𝑧)) |
64 | 49, 62, 63 | mpbir2an 937 |
. . . . 5
⊢ Ord 𝐴 |
65 | | prexg 4196 |
. . . . . . . 8
⊢ (({𝑥 ∈ {∅} ∣ 𝜑} ∈ V ∧ {𝑥 ∈ {∅} ∣ ¬
𝜑} ∈ V) → {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ∈ V) |
66 | 40, 22, 65 | mp2an 424 |
. . . . . . 7
⊢ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ∈ V |
67 | 2, 66 | eqeltri 2243 |
. . . . . 6
⊢ 𝐴 ∈ V |
68 | 67 | elon 4359 |
. . . . 5
⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
69 | 64, 68 | mpbir 145 |
. . . 4
⊢ 𝐴 ∈ On |
70 | | 2onn 6500 |
. . . . . 6
⊢
2o ∈ ω |
71 | | nnfi 6850 |
. . . . . 6
⊢
(2o ∈ ω → 2o ∈
Fin) |
72 | 70, 71 | ax-mp 5 |
. . . . 5
⊢
2o ∈ Fin |
73 | | pm5.19 701 |
. . . . . . . . . 10
⊢ ¬
(𝜑 ↔ ¬ 𝜑) |
74 | 13 | snm 3703 |
. . . . . . . . . . 11
⊢
∃𝑦 𝑦 ∈
{∅} |
75 | | r19.3rmv 3505 |
. . . . . . . . . . 11
⊢
(∃𝑦 𝑦 ∈ {∅} → ((𝜑 ↔ ¬ 𝜑) ↔ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑))) |
76 | 74, 75 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝜑 ↔ ¬ 𝜑) ↔ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑)) |
77 | 73, 76 | mtbi 665 |
. . . . . . . . 9
⊢ ¬
∀𝑥 ∈ {∅}
(𝜑 ↔ ¬ 𝜑) |
78 | | rabbi 2647 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
{∅} (𝜑 ↔ ¬
𝜑) ↔ {𝑥 ∈ {∅} ∣ 𝜑} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) |
79 | 77, 78 | mtbi 665 |
. . . . . . . 8
⊢ ¬
{𝑥 ∈ {∅} ∣
𝜑} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} |
80 | 79 | neir 2343 |
. . . . . . 7
⊢ {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑} |
81 | | pr2ne 7169 |
. . . . . . . 8
⊢ (({𝑥 ∈ {∅} ∣ 𝜑} ∈ V ∧ {𝑥 ∈ {∅} ∣ ¬
𝜑} ∈ V) → ({{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o ↔
{𝑥 ∈ {∅} ∣
𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑})) |
82 | 40, 22, 81 | mp2an 424 |
. . . . . . 7
⊢ ({{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o ↔
{𝑥 ∈ {∅} ∣
𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑}) |
83 | 80, 82 | mpbir 145 |
. . . . . 6
⊢ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈
2o |
84 | 2, 83 | eqbrtri 4010 |
. . . . 5
⊢ 𝐴 ≈
2o |
85 | | enfii 6852 |
. . . . 5
⊢
((2o ∈ Fin ∧ 𝐴 ≈ 2o) → 𝐴 ∈ Fin) |
86 | 72, 84, 85 | mp2an 424 |
. . . 4
⊢ 𝐴 ∈ Fin |
87 | 69, 86 | elini 3311 |
. . 3
⊢ 𝐴 ∈ (On ∩
Fin) |
88 | | eleq2 2234 |
. . 3
⊢ (ω
= (On ∩ Fin) → (𝐴
∈ ω ↔ 𝐴
∈ (On ∩ Fin))) |
89 | 87, 88 | mpbiri 167 |
. 2
⊢ (ω
= (On ∩ Fin) → 𝐴
∈ ω) |
90 | | df1o2 6408 |
. . . . 5
⊢
1o = {∅} |
91 | | 1lt2o 6421 |
. . . . 5
⊢
1o ∈ 2o |
92 | 90, 91 | eqeltrri 2244 |
. . . 4
⊢ {∅}
∈ 2o |
93 | | nneneq 6835 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧
2o ∈ ω) → (𝐴 ≈ 2o ↔ 𝐴 =
2o)) |
94 | 70, 93 | mpan2 423 |
. . . . 5
⊢ (𝐴 ∈ ω → (𝐴 ≈ 2o ↔
𝐴 =
2o)) |
95 | 84, 94 | mpbii 147 |
. . . 4
⊢ (𝐴 ∈ ω → 𝐴 =
2o) |
96 | 92, 95 | eleqtrrid 2260 |
. . 3
⊢ (𝐴 ∈ ω → {∅}
∈ 𝐴) |
97 | | elpri 3606 |
. . . 4
⊢
({∅} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬
𝜑})) |
98 | 97, 2 | eleq2s 2265 |
. . 3
⊢
({∅} ∈ 𝐴
→ ({∅} = {𝑥
∈ {∅} ∣ 𝜑}
∨ {∅} = {𝑥 ∈
{∅} ∣ ¬ 𝜑})) |
99 | 96, 98 | syl 14 |
. 2
⊢ (𝐴 ∈ ω →
({∅} = {𝑥 ∈
{∅} ∣ 𝜑} ∨
{∅} = {𝑥 ∈
{∅} ∣ ¬ 𝜑})) |
100 | 13 | snid 3614 |
. . . . . . 7
⊢ ∅
∈ {∅} |
101 | | eleq2 2234 |
. . . . . . 7
⊢
({∅} = {𝑥
∈ {∅} ∣ 𝜑}
→ (∅ ∈ {∅} ↔ ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑})) |
102 | 100, 101 | mpbii 147 |
. . . . . 6
⊢
({∅} = {𝑥
∈ {∅} ∣ 𝜑}
→ ∅ ∈ {𝑥
∈ {∅} ∣ 𝜑}) |
103 | | biidd 171 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜑)) |
104 | 103 | elrab 2886 |
. . . . . 6
⊢ (∅
∈ {𝑥 ∈ {∅}
∣ 𝜑} ↔ (∅
∈ {∅} ∧ 𝜑)) |
105 | 102, 104 | sylib 121 |
. . . . 5
⊢
({∅} = {𝑥
∈ {∅} ∣ 𝜑}
→ (∅ ∈ {∅} ∧ 𝜑)) |
106 | 105 | simprd 113 |
. . . 4
⊢
({∅} = {𝑥
∈ {∅} ∣ 𝜑}
→ 𝜑) |
107 | | eleq2 2234 |
. . . . . . 7
⊢
({∅} = {𝑥
∈ {∅} ∣ ¬ 𝜑} → (∅ ∈ {∅} ↔
∅ ∈ {𝑥 ∈
{∅} ∣ ¬ 𝜑})) |
108 | 100, 107 | mpbii 147 |
. . . . . 6
⊢
({∅} = {𝑥
∈ {∅} ∣ ¬ 𝜑} → ∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}) |
109 | | biidd 171 |
. . . . . . 7
⊢ (𝑥 = ∅ → (¬ 𝜑 ↔ ¬ 𝜑)) |
110 | 109 | elrab 2886 |
. . . . . 6
⊢ (∅
∈ {𝑥 ∈ {∅}
∣ ¬ 𝜑} ↔
(∅ ∈ {∅} ∧ ¬ 𝜑)) |
111 | 108, 110 | sylib 121 |
. . . . 5
⊢
({∅} = {𝑥
∈ {∅} ∣ ¬ 𝜑} → (∅ ∈ {∅} ∧
¬ 𝜑)) |
112 | 111 | simprd 113 |
. . . 4
⊢
({∅} = {𝑥
∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑) |
113 | 106, 112 | orim12i 754 |
. . 3
⊢
(({∅} = {𝑥
∈ {∅} ∣ 𝜑}
∨ {∅} = {𝑥 ∈
{∅} ∣ ¬ 𝜑})
→ (𝜑 ∨ ¬ 𝜑)) |
114 | | df-dc 830 |
. . 3
⊢
(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) |
115 | 113, 114 | sylibr 133 |
. 2
⊢
(({∅} = {𝑥
∈ {∅} ∣ 𝜑}
∨ {∅} = {𝑥 ∈
{∅} ∣ ¬ 𝜑})
→ DECID 𝜑) |
116 | 89, 99, 115 | 3syl 17 |
1
⊢ (ω
= (On ∩ Fin) → DECID 𝜑) |