ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidonfinlem GIF version

Theorem exmidonfinlem 7222
Description: Lemma for exmidonfin 7223. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
Hypothesis
Ref Expression
exmidonfinlem.a 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
Assertion
Ref Expression
exmidonfinlem (ω = (On ∩ Fin) → DECID 𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem exmidonfinlem
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 3630 . . . . . . . . . 10 (𝑟 ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
2 exmidonfinlem.a . . . . . . . . . 10 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
31, 2eleq2s 2284 . . . . . . . . 9 (𝑟𝐴 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
4 eleq2 2253 . . . . . . . . . . . 12 (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → (𝑠𝑟𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
54biimpcd 159 . . . . . . . . . . 11 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
6 elrabi 2905 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 ∈ {∅})
7 velsn 3624 . . . . . . . . . . . . . 14 (𝑠 ∈ {∅} ↔ 𝑠 = ∅)
86, 7sylib 122 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 = ∅)
9 biidd 172 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑠 → (𝜑𝜑))
109elrab 2908 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ (𝑠 ∈ {∅} ∧ 𝜑))
1110simprbi 275 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝜑)
1211notnotd 631 . . . . . . . . . . . . . . 15 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ¬ ¬ 𝜑)
13 0ex 4145 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
1413snm 3727 . . . . . . . . . . . . . . . 16 𝑤 𝑤 ∈ {∅}
15 r19.3rmv 3528 . . . . . . . . . . . . . . . 16 (∃𝑤 𝑤 ∈ {∅} → (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑))
1614, 15ax-mp 5 . . . . . . . . . . . . . . 15 (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
1712, 16sylib 122 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
18 rabeq0 3467 . . . . . . . . . . . . . 14 ({𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
1917, 18sylibr 134 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → {𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅)
208, 19eqtr4d 2225 . . . . . . . . . . . 12 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 = {𝑥 ∈ {∅} ∣ ¬ 𝜑})
21 p0ex 4206 . . . . . . . . . . . . . . 15 {∅} ∈ V
2221rabex 4162 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ V
2322prid2 3714 . . . . . . . . . . . . 13 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
2423, 2eleqtrri 2265 . . . . . . . . . . . 12 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ 𝐴
2520, 24eqeltrdi 2280 . . . . . . . . . . 11 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠𝐴)
265, 25syl6 33 . . . . . . . . . 10 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠𝐴))
27 eleq2 2253 . . . . . . . . . . . 12 (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (𝑠𝑟𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
2827biimpcd 159 . . . . . . . . . . 11 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
29 elrabi 2905 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 ∈ {∅})
3029, 7sylib 122 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 = ∅)
31 biidd 172 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑠 → (¬ 𝜑 ↔ ¬ 𝜑))
3231elrab 2908 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (𝑠 ∈ {∅} ∧ ¬ 𝜑))
3332simprbi 275 . . . . . . . . . . . . . . 15 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑)
34 r19.3rmv 3528 . . . . . . . . . . . . . . . 16 (∃𝑤 𝑤 ∈ {∅} → (¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ 𝜑))
3514, 34ax-mp 5 . . . . . . . . . . . . . . 15 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ 𝜑)
3633, 35sylib 122 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ∀𝑥 ∈ {∅} ¬ 𝜑)
37 rabeq0 3467 . . . . . . . . . . . . . 14 ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ 𝜑)
3836, 37sylibr 134 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → {𝑥 ∈ {∅} ∣ 𝜑} = ∅)
3930, 38eqtr4d 2225 . . . . . . . . . . . 12 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 = {𝑥 ∈ {∅} ∣ 𝜑})
4021rabex 4162 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅} ∣ 𝜑} ∈ V
4140prid1 3713 . . . . . . . . . . . . 13 {𝑥 ∈ {∅} ∣ 𝜑} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
4241, 2eleqtrri 2265 . . . . . . . . . . . 12 {𝑥 ∈ {∅} ∣ 𝜑} ∈ 𝐴
4339, 42eqeltrdi 2280 . . . . . . . . . . 11 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠𝐴)
4428, 43syl6 33 . . . . . . . . . 10 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠𝐴))
4526, 44jaod 718 . . . . . . . . 9 (𝑠𝑟 → ((𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → 𝑠𝐴))
463, 45mpan9 281 . . . . . . . 8 ((𝑟𝐴𝑠𝑟) → 𝑠𝐴)
4746rgen2 2576 . . . . . . 7 𝑟𝐴𝑠𝑟 𝑠𝐴
48 dftr5 4119 . . . . . . 7 (Tr 𝐴 ↔ ∀𝑟𝐴𝑠𝑟 𝑠𝐴)
4947, 48mpbir 146 . . . . . 6 Tr 𝐴
50 elpri 3630 . . . . . . . . 9 (𝑧 ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
5150, 2eleq2s 2284 . . . . . . . 8 (𝑧𝐴 → (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
52 ordtriexmidlem 4536 . . . . . . . . . . 11 {𝑥 ∈ {∅} ∣ 𝜑} ∈ On
5352ontrci 4445 . . . . . . . . . 10 Tr {𝑥 ∈ {∅} ∣ 𝜑}
54 treq 4122 . . . . . . . . . 10 (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} → (Tr 𝑧 ↔ Tr {𝑥 ∈ {∅} ∣ 𝜑}))
5553, 54mpbiri 168 . . . . . . . . 9 (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} → Tr 𝑧)
56 ordtriexmidlem 4536 . . . . . . . . . . 11 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ On
5756ontrci 4445 . . . . . . . . . 10 Tr {𝑥 ∈ {∅} ∣ ¬ 𝜑}
58 treq 4122 . . . . . . . . . 10 (𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (Tr 𝑧 ↔ Tr {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
5957, 58mpbiri 168 . . . . . . . . 9 (𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → Tr 𝑧)
6055, 59jaoi 717 . . . . . . . 8 ((𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → Tr 𝑧)
6151, 60syl 14 . . . . . . 7 (𝑧𝐴 → Tr 𝑧)
6261rgen 2543 . . . . . 6 𝑧𝐴 Tr 𝑧
63 dford3 4385 . . . . . 6 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑧𝐴 Tr 𝑧))
6449, 62, 63mpbir2an 944 . . . . 5 Ord 𝐴
65 prexg 4229 . . . . . . . 8 (({𝑥 ∈ {∅} ∣ 𝜑} ∈ V ∧ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ V) → {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ∈ V)
6640, 22, 65mp2an 426 . . . . . . 7 {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ∈ V
672, 66eqeltri 2262 . . . . . 6 𝐴 ∈ V
6867elon 4392 . . . . 5 (𝐴 ∈ On ↔ Ord 𝐴)
6964, 68mpbir 146 . . . 4 𝐴 ∈ On
70 2onn 6546 . . . . . 6 2o ∈ ω
71 nnfi 6900 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
7270, 71ax-mp 5 . . . . 5 2o ∈ Fin
73 pm5.19 707 . . . . . . . . . 10 ¬ (𝜑 ↔ ¬ 𝜑)
7413snm 3727 . . . . . . . . . . 11 𝑦 𝑦 ∈ {∅}
75 r19.3rmv 3528 . . . . . . . . . . 11 (∃𝑦 𝑦 ∈ {∅} → ((𝜑 ↔ ¬ 𝜑) ↔ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑)))
7674, 75ax-mp 5 . . . . . . . . . 10 ((𝜑 ↔ ¬ 𝜑) ↔ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑))
7773, 76mtbi 671 . . . . . . . . 9 ¬ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑)
78 rabbi 2668 . . . . . . . . 9 (∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑) ↔ {𝑥 ∈ {∅} ∣ 𝜑} = {𝑥 ∈ {∅} ∣ ¬ 𝜑})
7977, 78mtbi 671 . . . . . . . 8 ¬ {𝑥 ∈ {∅} ∣ 𝜑} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}
8079neir 2363 . . . . . . 7 {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑}
81 pr2ne 7221 . . . . . . . 8 (({𝑥 ∈ {∅} ∣ 𝜑} ∈ V ∧ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ V) → ({{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o ↔ {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
8240, 22, 81mp2an 426 . . . . . . 7 ({{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o ↔ {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑})
8380, 82mpbir 146 . . . . . 6 {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o
842, 83eqbrtri 4039 . . . . 5 𝐴 ≈ 2o
85 enfii 6902 . . . . 5 ((2o ∈ Fin ∧ 𝐴 ≈ 2o) → 𝐴 ∈ Fin)
8672, 84, 85mp2an 426 . . . 4 𝐴 ∈ Fin
8769, 86elini 3334 . . 3 𝐴 ∈ (On ∩ Fin)
88 eleq2 2253 . . 3 (ω = (On ∩ Fin) → (𝐴 ∈ ω ↔ 𝐴 ∈ (On ∩ Fin)))
8987, 88mpbiri 168 . 2 (ω = (On ∩ Fin) → 𝐴 ∈ ω)
90 df1o2 6454 . . . . 5 1o = {∅}
91 1lt2o 6467 . . . . 5 1o ∈ 2o
9290, 91eqeltrri 2263 . . . 4 {∅} ∈ 2o
93 nneneq 6885 . . . . . 6 ((𝐴 ∈ ω ∧ 2o ∈ ω) → (𝐴 ≈ 2o𝐴 = 2o))
9470, 93mpan2 425 . . . . 5 (𝐴 ∈ ω → (𝐴 ≈ 2o𝐴 = 2o))
9584, 94mpbii 148 . . . 4 (𝐴 ∈ ω → 𝐴 = 2o)
9692, 95eleqtrrid 2279 . . 3 (𝐴 ∈ ω → {∅} ∈ 𝐴)
97 elpri 3630 . . . 4 ({∅} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
9897, 2eleq2s 2284 . . 3 ({∅} ∈ 𝐴 → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
9996, 98syl 14 . 2 (𝐴 ∈ ω → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
10013snid 3638 . . . . . . 7 ∅ ∈ {∅}
101 eleq2 2253 . . . . . . 7 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → (∅ ∈ {∅} ↔ ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
102100, 101mpbii 148 . . . . . 6 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑})
103 biidd 172 . . . . . . 7 (𝑥 = ∅ → (𝜑𝜑))
104103elrab 2908 . . . . . 6 (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {∅} ∧ 𝜑))
105102, 104sylib 122 . . . . 5 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → (∅ ∈ {∅} ∧ 𝜑))
106105simprd 114 . . . 4 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → 𝜑)
107 eleq2 2253 . . . . . . 7 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (∅ ∈ {∅} ↔ ∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
108100, 107mpbii 148 . . . . . 6 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑})
109 biidd 172 . . . . . . 7 (𝑥 = ∅ → (¬ 𝜑 ↔ ¬ 𝜑))
110109elrab 2908 . . . . . 6 (∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (∅ ∈ {∅} ∧ ¬ 𝜑))
111108, 110sylib 122 . . . . 5 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (∅ ∈ {∅} ∧ ¬ 𝜑))
112111simprd 114 . . . 4 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑)
113106, 112orim12i 760 . . 3 (({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → (𝜑 ∨ ¬ 𝜑))
114 df-dc 836 . . 3 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
115113, 114sylibr 134 . 2 (({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → DECID 𝜑)
11689, 99, 1153syl 17 1 (ω = (On ∩ Fin) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wex 1503  wcel 2160  wne 2360  wral 2468  {crab 2472  Vcvv 2752  cin 3143  c0 3437  {csn 3607  {cpr 3608   class class class wbr 4018  Tr wtr 4116  Ord word 4380  Oncon0 4381  ωcom 4607  1oc1o 6434  2oc2o 6435  cen 6764  Fincfn 6766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-1o 6441  df-2o 6442  df-er 6559  df-en 6767  df-fin 6769
This theorem is referenced by:  exmidonfin  7223
  Copyright terms: Public domain W3C validator