ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidonfinlem GIF version

Theorem exmidonfinlem 7255
Description: Lemma for exmidonfin 7256. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
Hypothesis
Ref Expression
exmidonfinlem.a 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
Assertion
Ref Expression
exmidonfinlem (ω = (On ∩ Fin) → DECID 𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem exmidonfinlem
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 3642 . . . . . . . . . 10 (𝑟 ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
2 exmidonfinlem.a . . . . . . . . . 10 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
31, 2eleq2s 2288 . . . . . . . . 9 (𝑟𝐴 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
4 eleq2 2257 . . . . . . . . . . . 12 (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → (𝑠𝑟𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
54biimpcd 159 . . . . . . . . . . 11 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
6 elrabi 2914 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 ∈ {∅})
7 velsn 3636 . . . . . . . . . . . . . 14 (𝑠 ∈ {∅} ↔ 𝑠 = ∅)
86, 7sylib 122 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 = ∅)
9 biidd 172 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑠 → (𝜑𝜑))
109elrab 2917 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ (𝑠 ∈ {∅} ∧ 𝜑))
1110simprbi 275 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝜑)
1211notnotd 631 . . . . . . . . . . . . . . 15 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ¬ ¬ 𝜑)
13 0ex 4157 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
1413snm 3739 . . . . . . . . . . . . . . . 16 𝑤 𝑤 ∈ {∅}
15 r19.3rmv 3538 . . . . . . . . . . . . . . . 16 (∃𝑤 𝑤 ∈ {∅} → (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑))
1614, 15ax-mp 5 . . . . . . . . . . . . . . 15 (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
1712, 16sylib 122 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
18 rabeq0 3477 . . . . . . . . . . . . . 14 ({𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
1917, 18sylibr 134 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → {𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅)
208, 19eqtr4d 2229 . . . . . . . . . . . 12 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 = {𝑥 ∈ {∅} ∣ ¬ 𝜑})
21 p0ex 4218 . . . . . . . . . . . . . . 15 {∅} ∈ V
2221rabex 4174 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ V
2322prid2 3726 . . . . . . . . . . . . 13 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
2423, 2eleqtrri 2269 . . . . . . . . . . . 12 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ 𝐴
2520, 24eqeltrdi 2284 . . . . . . . . . . 11 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠𝐴)
265, 25syl6 33 . . . . . . . . . 10 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠𝐴))
27 eleq2 2257 . . . . . . . . . . . 12 (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (𝑠𝑟𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
2827biimpcd 159 . . . . . . . . . . 11 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
29 elrabi 2914 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 ∈ {∅})
3029, 7sylib 122 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 = ∅)
31 biidd 172 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑠 → (¬ 𝜑 ↔ ¬ 𝜑))
3231elrab 2917 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (𝑠 ∈ {∅} ∧ ¬ 𝜑))
3332simprbi 275 . . . . . . . . . . . . . . 15 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑)
34 r19.3rmv 3538 . . . . . . . . . . . . . . . 16 (∃𝑤 𝑤 ∈ {∅} → (¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ 𝜑))
3514, 34ax-mp 5 . . . . . . . . . . . . . . 15 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ 𝜑)
3633, 35sylib 122 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ∀𝑥 ∈ {∅} ¬ 𝜑)
37 rabeq0 3477 . . . . . . . . . . . . . 14 ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ 𝜑)
3836, 37sylibr 134 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → {𝑥 ∈ {∅} ∣ 𝜑} = ∅)
3930, 38eqtr4d 2229 . . . . . . . . . . . 12 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 = {𝑥 ∈ {∅} ∣ 𝜑})
4021rabex 4174 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅} ∣ 𝜑} ∈ V
4140prid1 3725 . . . . . . . . . . . . 13 {𝑥 ∈ {∅} ∣ 𝜑} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
4241, 2eleqtrri 2269 . . . . . . . . . . . 12 {𝑥 ∈ {∅} ∣ 𝜑} ∈ 𝐴
4339, 42eqeltrdi 2284 . . . . . . . . . . 11 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠𝐴)
4428, 43syl6 33 . . . . . . . . . 10 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠𝐴))
4526, 44jaod 718 . . . . . . . . 9 (𝑠𝑟 → ((𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → 𝑠𝐴))
463, 45mpan9 281 . . . . . . . 8 ((𝑟𝐴𝑠𝑟) → 𝑠𝐴)
4746rgen2 2580 . . . . . . 7 𝑟𝐴𝑠𝑟 𝑠𝐴
48 dftr5 4131 . . . . . . 7 (Tr 𝐴 ↔ ∀𝑟𝐴𝑠𝑟 𝑠𝐴)
4947, 48mpbir 146 . . . . . 6 Tr 𝐴
50 elpri 3642 . . . . . . . . 9 (𝑧 ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
5150, 2eleq2s 2288 . . . . . . . 8 (𝑧𝐴 → (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
52 ordtriexmidlem 4552 . . . . . . . . . . 11 {𝑥 ∈ {∅} ∣ 𝜑} ∈ On
5352ontrci 4459 . . . . . . . . . 10 Tr {𝑥 ∈ {∅} ∣ 𝜑}
54 treq 4134 . . . . . . . . . 10 (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} → (Tr 𝑧 ↔ Tr {𝑥 ∈ {∅} ∣ 𝜑}))
5553, 54mpbiri 168 . . . . . . . . 9 (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} → Tr 𝑧)
56 ordtriexmidlem 4552 . . . . . . . . . . 11 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ On
5756ontrci 4459 . . . . . . . . . 10 Tr {𝑥 ∈ {∅} ∣ ¬ 𝜑}
58 treq 4134 . . . . . . . . . 10 (𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (Tr 𝑧 ↔ Tr {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
5957, 58mpbiri 168 . . . . . . . . 9 (𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → Tr 𝑧)
6055, 59jaoi 717 . . . . . . . 8 ((𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → Tr 𝑧)
6151, 60syl 14 . . . . . . 7 (𝑧𝐴 → Tr 𝑧)
6261rgen 2547 . . . . . 6 𝑧𝐴 Tr 𝑧
63 dford3 4399 . . . . . 6 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑧𝐴 Tr 𝑧))
6449, 62, 63mpbir2an 944 . . . . 5 Ord 𝐴
65 prexg 4241 . . . . . . . 8 (({𝑥 ∈ {∅} ∣ 𝜑} ∈ V ∧ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ V) → {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ∈ V)
6640, 22, 65mp2an 426 . . . . . . 7 {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ∈ V
672, 66eqeltri 2266 . . . . . 6 𝐴 ∈ V
6867elon 4406 . . . . 5 (𝐴 ∈ On ↔ Ord 𝐴)
6964, 68mpbir 146 . . . 4 𝐴 ∈ On
70 2onn 6576 . . . . . 6 2o ∈ ω
71 nnfi 6930 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
7270, 71ax-mp 5 . . . . 5 2o ∈ Fin
73 pm5.19 707 . . . . . . . . . 10 ¬ (𝜑 ↔ ¬ 𝜑)
7413snm 3739 . . . . . . . . . . 11 𝑦 𝑦 ∈ {∅}
75 r19.3rmv 3538 . . . . . . . . . . 11 (∃𝑦 𝑦 ∈ {∅} → ((𝜑 ↔ ¬ 𝜑) ↔ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑)))
7674, 75ax-mp 5 . . . . . . . . . 10 ((𝜑 ↔ ¬ 𝜑) ↔ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑))
7773, 76mtbi 671 . . . . . . . . 9 ¬ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑)
78 rabbi 2672 . . . . . . . . 9 (∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑) ↔ {𝑥 ∈ {∅} ∣ 𝜑} = {𝑥 ∈ {∅} ∣ ¬ 𝜑})
7977, 78mtbi 671 . . . . . . . 8 ¬ {𝑥 ∈ {∅} ∣ 𝜑} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}
8079neir 2367 . . . . . . 7 {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑}
81 pr2ne 7254 . . . . . . . 8 (({𝑥 ∈ {∅} ∣ 𝜑} ∈ V ∧ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ V) → ({{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o ↔ {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
8240, 22, 81mp2an 426 . . . . . . 7 ({{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o ↔ {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑})
8380, 82mpbir 146 . . . . . 6 {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o
842, 83eqbrtri 4051 . . . . 5 𝐴 ≈ 2o
85 enfii 6932 . . . . 5 ((2o ∈ Fin ∧ 𝐴 ≈ 2o) → 𝐴 ∈ Fin)
8672, 84, 85mp2an 426 . . . 4 𝐴 ∈ Fin
8769, 86elini 3344 . . 3 𝐴 ∈ (On ∩ Fin)
88 eleq2 2257 . . 3 (ω = (On ∩ Fin) → (𝐴 ∈ ω ↔ 𝐴 ∈ (On ∩ Fin)))
8987, 88mpbiri 168 . 2 (ω = (On ∩ Fin) → 𝐴 ∈ ω)
90 df1o2 6484 . . . . 5 1o = {∅}
91 1lt2o 6497 . . . . 5 1o ∈ 2o
9290, 91eqeltrri 2267 . . . 4 {∅} ∈ 2o
93 nneneq 6915 . . . . . 6 ((𝐴 ∈ ω ∧ 2o ∈ ω) → (𝐴 ≈ 2o𝐴 = 2o))
9470, 93mpan2 425 . . . . 5 (𝐴 ∈ ω → (𝐴 ≈ 2o𝐴 = 2o))
9584, 94mpbii 148 . . . 4 (𝐴 ∈ ω → 𝐴 = 2o)
9692, 95eleqtrrid 2283 . . 3 (𝐴 ∈ ω → {∅} ∈ 𝐴)
97 elpri 3642 . . . 4 ({∅} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
9897, 2eleq2s 2288 . . 3 ({∅} ∈ 𝐴 → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
9996, 98syl 14 . 2 (𝐴 ∈ ω → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
10013snid 3650 . . . . . . 7 ∅ ∈ {∅}
101 eleq2 2257 . . . . . . 7 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → (∅ ∈ {∅} ↔ ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
102100, 101mpbii 148 . . . . . 6 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑})
103 biidd 172 . . . . . . 7 (𝑥 = ∅ → (𝜑𝜑))
104103elrab 2917 . . . . . 6 (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {∅} ∧ 𝜑))
105102, 104sylib 122 . . . . 5 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → (∅ ∈ {∅} ∧ 𝜑))
106105simprd 114 . . . 4 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → 𝜑)
107 eleq2 2257 . . . . . . 7 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (∅ ∈ {∅} ↔ ∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
108100, 107mpbii 148 . . . . . 6 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑})
109 biidd 172 . . . . . . 7 (𝑥 = ∅ → (¬ 𝜑 ↔ ¬ 𝜑))
110109elrab 2917 . . . . . 6 (∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (∅ ∈ {∅} ∧ ¬ 𝜑))
111108, 110sylib 122 . . . . 5 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (∅ ∈ {∅} ∧ ¬ 𝜑))
112111simprd 114 . . . 4 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑)
113106, 112orim12i 760 . . 3 (({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → (𝜑 ∨ ¬ 𝜑))
114 df-dc 836 . . 3 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
115113, 114sylibr 134 . 2 (({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → DECID 𝜑)
11689, 99, 1153syl 17 1 (ω = (On ∩ Fin) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wex 1503  wcel 2164  wne 2364  wral 2472  {crab 2476  Vcvv 2760  cin 3153  c0 3447  {csn 3619  {cpr 3620   class class class wbr 4030  Tr wtr 4128  Ord word 4394  Oncon0 4395  ωcom 4623  1oc1o 6464  2oc2o 6465  cen 6794  Fincfn 6796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6471  df-2o 6472  df-er 6589  df-en 6797  df-fin 6799
This theorem is referenced by:  exmidonfin  7256
  Copyright terms: Public domain W3C validator