ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidonfinlem GIF version

Theorem exmidonfinlem 7272
Description: Lemma for exmidonfin 7273. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
Hypothesis
Ref Expression
exmidonfinlem.a 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
Assertion
Ref Expression
exmidonfinlem (ω = (On ∩ Fin) → DECID 𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem exmidonfinlem
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 3646 . . . . . . . . . 10 (𝑟 ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
2 exmidonfinlem.a . . . . . . . . . 10 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
31, 2eleq2s 2291 . . . . . . . . 9 (𝑟𝐴 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
4 eleq2 2260 . . . . . . . . . . . 12 (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → (𝑠𝑟𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
54biimpcd 159 . . . . . . . . . . 11 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
6 elrabi 2917 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 ∈ {∅})
7 velsn 3640 . . . . . . . . . . . . . 14 (𝑠 ∈ {∅} ↔ 𝑠 = ∅)
86, 7sylib 122 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 = ∅)
9 biidd 172 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑠 → (𝜑𝜑))
109elrab 2920 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ (𝑠 ∈ {∅} ∧ 𝜑))
1110simprbi 275 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝜑)
1211notnotd 631 . . . . . . . . . . . . . . 15 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ¬ ¬ 𝜑)
13 0ex 4161 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
1413snm 3743 . . . . . . . . . . . . . . . 16 𝑤 𝑤 ∈ {∅}
15 r19.3rmv 3542 . . . . . . . . . . . . . . . 16 (∃𝑤 𝑤 ∈ {∅} → (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑))
1614, 15ax-mp 5 . . . . . . . . . . . . . . 15 (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
1712, 16sylib 122 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
18 rabeq0 3481 . . . . . . . . . . . . . 14 ({𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
1917, 18sylibr 134 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → {𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅)
208, 19eqtr4d 2232 . . . . . . . . . . . 12 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 = {𝑥 ∈ {∅} ∣ ¬ 𝜑})
21 p0ex 4222 . . . . . . . . . . . . . . 15 {∅} ∈ V
2221rabex 4178 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ V
2322prid2 3730 . . . . . . . . . . . . 13 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
2423, 2eleqtrri 2272 . . . . . . . . . . . 12 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ 𝐴
2520, 24eqeltrdi 2287 . . . . . . . . . . 11 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠𝐴)
265, 25syl6 33 . . . . . . . . . 10 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠𝐴))
27 eleq2 2260 . . . . . . . . . . . 12 (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (𝑠𝑟𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
2827biimpcd 159 . . . . . . . . . . 11 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
29 elrabi 2917 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 ∈ {∅})
3029, 7sylib 122 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 = ∅)
31 biidd 172 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑠 → (¬ 𝜑 ↔ ¬ 𝜑))
3231elrab 2920 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (𝑠 ∈ {∅} ∧ ¬ 𝜑))
3332simprbi 275 . . . . . . . . . . . . . . 15 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑)
34 r19.3rmv 3542 . . . . . . . . . . . . . . . 16 (∃𝑤 𝑤 ∈ {∅} → (¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ 𝜑))
3514, 34ax-mp 5 . . . . . . . . . . . . . . 15 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ 𝜑)
3633, 35sylib 122 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ∀𝑥 ∈ {∅} ¬ 𝜑)
37 rabeq0 3481 . . . . . . . . . . . . . 14 ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ 𝜑)
3836, 37sylibr 134 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → {𝑥 ∈ {∅} ∣ 𝜑} = ∅)
3930, 38eqtr4d 2232 . . . . . . . . . . . 12 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 = {𝑥 ∈ {∅} ∣ 𝜑})
4021rabex 4178 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅} ∣ 𝜑} ∈ V
4140prid1 3729 . . . . . . . . . . . . 13 {𝑥 ∈ {∅} ∣ 𝜑} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
4241, 2eleqtrri 2272 . . . . . . . . . . . 12 {𝑥 ∈ {∅} ∣ 𝜑} ∈ 𝐴
4339, 42eqeltrdi 2287 . . . . . . . . . . 11 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠𝐴)
4428, 43syl6 33 . . . . . . . . . 10 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠𝐴))
4526, 44jaod 718 . . . . . . . . 9 (𝑠𝑟 → ((𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → 𝑠𝐴))
463, 45mpan9 281 . . . . . . . 8 ((𝑟𝐴𝑠𝑟) → 𝑠𝐴)
4746rgen2 2583 . . . . . . 7 𝑟𝐴𝑠𝑟 𝑠𝐴
48 dftr5 4135 . . . . . . 7 (Tr 𝐴 ↔ ∀𝑟𝐴𝑠𝑟 𝑠𝐴)
4947, 48mpbir 146 . . . . . 6 Tr 𝐴
50 elpri 3646 . . . . . . . . 9 (𝑧 ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
5150, 2eleq2s 2291 . . . . . . . 8 (𝑧𝐴 → (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
52 ordtriexmidlem 4556 . . . . . . . . . . 11 {𝑥 ∈ {∅} ∣ 𝜑} ∈ On
5352ontrci 4463 . . . . . . . . . 10 Tr {𝑥 ∈ {∅} ∣ 𝜑}
54 treq 4138 . . . . . . . . . 10 (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} → (Tr 𝑧 ↔ Tr {𝑥 ∈ {∅} ∣ 𝜑}))
5553, 54mpbiri 168 . . . . . . . . 9 (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} → Tr 𝑧)
56 ordtriexmidlem 4556 . . . . . . . . . . 11 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ On
5756ontrci 4463 . . . . . . . . . 10 Tr {𝑥 ∈ {∅} ∣ ¬ 𝜑}
58 treq 4138 . . . . . . . . . 10 (𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (Tr 𝑧 ↔ Tr {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
5957, 58mpbiri 168 . . . . . . . . 9 (𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → Tr 𝑧)
6055, 59jaoi 717 . . . . . . . 8 ((𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → Tr 𝑧)
6151, 60syl 14 . . . . . . 7 (𝑧𝐴 → Tr 𝑧)
6261rgen 2550 . . . . . 6 𝑧𝐴 Tr 𝑧
63 dford3 4403 . . . . . 6 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑧𝐴 Tr 𝑧))
6449, 62, 63mpbir2an 944 . . . . 5 Ord 𝐴
65 prexg 4245 . . . . . . . 8 (({𝑥 ∈ {∅} ∣ 𝜑} ∈ V ∧ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ V) → {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ∈ V)
6640, 22, 65mp2an 426 . . . . . . 7 {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ∈ V
672, 66eqeltri 2269 . . . . . 6 𝐴 ∈ V
6867elon 4410 . . . . 5 (𝐴 ∈ On ↔ Ord 𝐴)
6964, 68mpbir 146 . . . 4 𝐴 ∈ On
70 2onn 6588 . . . . . 6 2o ∈ ω
71 nnfi 6942 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
7270, 71ax-mp 5 . . . . 5 2o ∈ Fin
73 pm5.19 707 . . . . . . . . . 10 ¬ (𝜑 ↔ ¬ 𝜑)
7413snm 3743 . . . . . . . . . . 11 𝑦 𝑦 ∈ {∅}
75 r19.3rmv 3542 . . . . . . . . . . 11 (∃𝑦 𝑦 ∈ {∅} → ((𝜑 ↔ ¬ 𝜑) ↔ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑)))
7674, 75ax-mp 5 . . . . . . . . . 10 ((𝜑 ↔ ¬ 𝜑) ↔ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑))
7773, 76mtbi 671 . . . . . . . . 9 ¬ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑)
78 rabbi 2675 . . . . . . . . 9 (∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑) ↔ {𝑥 ∈ {∅} ∣ 𝜑} = {𝑥 ∈ {∅} ∣ ¬ 𝜑})
7977, 78mtbi 671 . . . . . . . 8 ¬ {𝑥 ∈ {∅} ∣ 𝜑} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}
8079neir 2370 . . . . . . 7 {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑}
81 pr2ne 7271 . . . . . . . 8 (({𝑥 ∈ {∅} ∣ 𝜑} ∈ V ∧ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ V) → ({{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o ↔ {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
8240, 22, 81mp2an 426 . . . . . . 7 ({{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o ↔ {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑})
8380, 82mpbir 146 . . . . . 6 {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o
842, 83eqbrtri 4055 . . . . 5 𝐴 ≈ 2o
85 enfii 6944 . . . . 5 ((2o ∈ Fin ∧ 𝐴 ≈ 2o) → 𝐴 ∈ Fin)
8672, 84, 85mp2an 426 . . . 4 𝐴 ∈ Fin
8769, 86elini 3348 . . 3 𝐴 ∈ (On ∩ Fin)
88 eleq2 2260 . . 3 (ω = (On ∩ Fin) → (𝐴 ∈ ω ↔ 𝐴 ∈ (On ∩ Fin)))
8987, 88mpbiri 168 . 2 (ω = (On ∩ Fin) → 𝐴 ∈ ω)
90 df1o2 6496 . . . . 5 1o = {∅}
91 1lt2o 6509 . . . . 5 1o ∈ 2o
9290, 91eqeltrri 2270 . . . 4 {∅} ∈ 2o
93 nneneq 6927 . . . . . 6 ((𝐴 ∈ ω ∧ 2o ∈ ω) → (𝐴 ≈ 2o𝐴 = 2o))
9470, 93mpan2 425 . . . . 5 (𝐴 ∈ ω → (𝐴 ≈ 2o𝐴 = 2o))
9584, 94mpbii 148 . . . 4 (𝐴 ∈ ω → 𝐴 = 2o)
9692, 95eleqtrrid 2286 . . 3 (𝐴 ∈ ω → {∅} ∈ 𝐴)
97 elpri 3646 . . . 4 ({∅} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
9897, 2eleq2s 2291 . . 3 ({∅} ∈ 𝐴 → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
9996, 98syl 14 . 2 (𝐴 ∈ ω → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
10013snid 3654 . . . . . . 7 ∅ ∈ {∅}
101 eleq2 2260 . . . . . . 7 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → (∅ ∈ {∅} ↔ ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
102100, 101mpbii 148 . . . . . 6 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑})
103 biidd 172 . . . . . . 7 (𝑥 = ∅ → (𝜑𝜑))
104103elrab 2920 . . . . . 6 (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {∅} ∧ 𝜑))
105102, 104sylib 122 . . . . 5 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → (∅ ∈ {∅} ∧ 𝜑))
106105simprd 114 . . . 4 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → 𝜑)
107 eleq2 2260 . . . . . . 7 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (∅ ∈ {∅} ↔ ∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
108100, 107mpbii 148 . . . . . 6 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑})
109 biidd 172 . . . . . . 7 (𝑥 = ∅ → (¬ 𝜑 ↔ ¬ 𝜑))
110109elrab 2920 . . . . . 6 (∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (∅ ∈ {∅} ∧ ¬ 𝜑))
111108, 110sylib 122 . . . . 5 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (∅ ∈ {∅} ∧ ¬ 𝜑))
112111simprd 114 . . . 4 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑)
113106, 112orim12i 760 . . 3 (({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → (𝜑 ∨ ¬ 𝜑))
114 df-dc 836 . . 3 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
115113, 114sylibr 134 . 2 (({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → DECID 𝜑)
11689, 99, 1153syl 17 1 (ω = (On ∩ Fin) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  wne 2367  wral 2475  {crab 2479  Vcvv 2763  cin 3156  c0 3451  {csn 3623  {cpr 3624   class class class wbr 4034  Tr wtr 4132  Ord word 4398  Oncon0 4399  ωcom 4627  1oc1o 6476  2oc2o 6477  cen 6806  Fincfn 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-fin 6811
This theorem is referenced by:  exmidonfin  7273
  Copyright terms: Public domain W3C validator