ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidonfinlem GIF version

Theorem exmidonfinlem 7260
Description: Lemma for exmidonfin 7261. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
Hypothesis
Ref Expression
exmidonfinlem.a 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
Assertion
Ref Expression
exmidonfinlem (ω = (On ∩ Fin) → DECID 𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem exmidonfinlem
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 3645 . . . . . . . . . 10 (𝑟 ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
2 exmidonfinlem.a . . . . . . . . . 10 𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
31, 2eleq2s 2291 . . . . . . . . 9 (𝑟𝐴 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
4 eleq2 2260 . . . . . . . . . . . 12 (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → (𝑠𝑟𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
54biimpcd 159 . . . . . . . . . . 11 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
6 elrabi 2917 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 ∈ {∅})
7 velsn 3639 . . . . . . . . . . . . . 14 (𝑠 ∈ {∅} ↔ 𝑠 = ∅)
86, 7sylib 122 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 = ∅)
9 biidd 172 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑠 → (𝜑𝜑))
109elrab 2920 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ (𝑠 ∈ {∅} ∧ 𝜑))
1110simprbi 275 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝜑)
1211notnotd 631 . . . . . . . . . . . . . . 15 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ¬ ¬ 𝜑)
13 0ex 4160 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
1413snm 3742 . . . . . . . . . . . . . . . 16 𝑤 𝑤 ∈ {∅}
15 r19.3rmv 3541 . . . . . . . . . . . . . . . 16 (∃𝑤 𝑤 ∈ {∅} → (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑))
1614, 15ax-mp 5 . . . . . . . . . . . . . . 15 (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
1712, 16sylib 122 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
18 rabeq0 3480 . . . . . . . . . . . . . 14 ({𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
1917, 18sylibr 134 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → {𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅)
208, 19eqtr4d 2232 . . . . . . . . . . . 12 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠 = {𝑥 ∈ {∅} ∣ ¬ 𝜑})
21 p0ex 4221 . . . . . . . . . . . . . . 15 {∅} ∈ V
2221rabex 4177 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ V
2322prid2 3729 . . . . . . . . . . . . 13 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
2423, 2eleqtrri 2272 . . . . . . . . . . . 12 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ 𝐴
2520, 24eqeltrdi 2287 . . . . . . . . . . 11 (𝑠 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠𝐴)
265, 25syl6 33 . . . . . . . . . 10 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} → 𝑠𝐴))
27 eleq2 2260 . . . . . . . . . . . 12 (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (𝑠𝑟𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
2827biimpcd 159 . . . . . . . . . . 11 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
29 elrabi 2917 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 ∈ {∅})
3029, 7sylib 122 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 = ∅)
31 biidd 172 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑠 → (¬ 𝜑 ↔ ¬ 𝜑))
3231elrab 2920 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (𝑠 ∈ {∅} ∧ ¬ 𝜑))
3332simprbi 275 . . . . . . . . . . . . . . 15 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑)
34 r19.3rmv 3541 . . . . . . . . . . . . . . . 16 (∃𝑤 𝑤 ∈ {∅} → (¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ 𝜑))
3514, 34ax-mp 5 . . . . . . . . . . . . . . 15 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ 𝜑)
3633, 35sylib 122 . . . . . . . . . . . . . 14 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ∀𝑥 ∈ {∅} ¬ 𝜑)
37 rabeq0 3480 . . . . . . . . . . . . . 14 ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ 𝜑)
3836, 37sylibr 134 . . . . . . . . . . . . 13 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → {𝑥 ∈ {∅} ∣ 𝜑} = ∅)
3930, 38eqtr4d 2232 . . . . . . . . . . . 12 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠 = {𝑥 ∈ {∅} ∣ 𝜑})
4021rabex 4177 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅} ∣ 𝜑} ∈ V
4140prid1 3728 . . . . . . . . . . . . 13 {𝑥 ∈ {∅} ∣ 𝜑} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}
4241, 2eleqtrri 2272 . . . . . . . . . . . 12 {𝑥 ∈ {∅} ∣ 𝜑} ∈ 𝐴
4339, 42eqeltrdi 2287 . . . . . . . . . . 11 (𝑠 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠𝐴)
4428, 43syl6 33 . . . . . . . . . 10 (𝑠𝑟 → (𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → 𝑠𝐴))
4526, 44jaod 718 . . . . . . . . 9 (𝑠𝑟 → ((𝑟 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑟 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → 𝑠𝐴))
463, 45mpan9 281 . . . . . . . 8 ((𝑟𝐴𝑠𝑟) → 𝑠𝐴)
4746rgen2 2583 . . . . . . 7 𝑟𝐴𝑠𝑟 𝑠𝐴
48 dftr5 4134 . . . . . . 7 (Tr 𝐴 ↔ ∀𝑟𝐴𝑠𝑟 𝑠𝐴)
4947, 48mpbir 146 . . . . . 6 Tr 𝐴
50 elpri 3645 . . . . . . . . 9 (𝑧 ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
5150, 2eleq2s 2291 . . . . . . . 8 (𝑧𝐴 → (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
52 ordtriexmidlem 4555 . . . . . . . . . . 11 {𝑥 ∈ {∅} ∣ 𝜑} ∈ On
5352ontrci 4462 . . . . . . . . . 10 Tr {𝑥 ∈ {∅} ∣ 𝜑}
54 treq 4137 . . . . . . . . . 10 (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} → (Tr 𝑧 ↔ Tr {𝑥 ∈ {∅} ∣ 𝜑}))
5553, 54mpbiri 168 . . . . . . . . 9 (𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} → Tr 𝑧)
56 ordtriexmidlem 4555 . . . . . . . . . . 11 {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ On
5756ontrci 4462 . . . . . . . . . 10 Tr {𝑥 ∈ {∅} ∣ ¬ 𝜑}
58 treq 4137 . . . . . . . . . 10 (𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (Tr 𝑧 ↔ Tr {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
5957, 58mpbiri 168 . . . . . . . . 9 (𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → Tr 𝑧)
6055, 59jaoi 717 . . . . . . . 8 ((𝑧 = {𝑥 ∈ {∅} ∣ 𝜑} ∨ 𝑧 = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → Tr 𝑧)
6151, 60syl 14 . . . . . . 7 (𝑧𝐴 → Tr 𝑧)
6261rgen 2550 . . . . . 6 𝑧𝐴 Tr 𝑧
63 dford3 4402 . . . . . 6 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑧𝐴 Tr 𝑧))
6449, 62, 63mpbir2an 944 . . . . 5 Ord 𝐴
65 prexg 4244 . . . . . . . 8 (({𝑥 ∈ {∅} ∣ 𝜑} ∈ V ∧ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ V) → {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ∈ V)
6640, 22, 65mp2an 426 . . . . . . 7 {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ∈ V
672, 66eqeltri 2269 . . . . . 6 𝐴 ∈ V
6867elon 4409 . . . . 5 (𝐴 ∈ On ↔ Ord 𝐴)
6964, 68mpbir 146 . . . 4 𝐴 ∈ On
70 2onn 6579 . . . . . 6 2o ∈ ω
71 nnfi 6933 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
7270, 71ax-mp 5 . . . . 5 2o ∈ Fin
73 pm5.19 707 . . . . . . . . . 10 ¬ (𝜑 ↔ ¬ 𝜑)
7413snm 3742 . . . . . . . . . . 11 𝑦 𝑦 ∈ {∅}
75 r19.3rmv 3541 . . . . . . . . . . 11 (∃𝑦 𝑦 ∈ {∅} → ((𝜑 ↔ ¬ 𝜑) ↔ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑)))
7674, 75ax-mp 5 . . . . . . . . . 10 ((𝜑 ↔ ¬ 𝜑) ↔ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑))
7773, 76mtbi 671 . . . . . . . . 9 ¬ ∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑)
78 rabbi 2675 . . . . . . . . 9 (∀𝑥 ∈ {∅} (𝜑 ↔ ¬ 𝜑) ↔ {𝑥 ∈ {∅} ∣ 𝜑} = {𝑥 ∈ {∅} ∣ ¬ 𝜑})
7977, 78mtbi 671 . . . . . . . 8 ¬ {𝑥 ∈ {∅} ∣ 𝜑} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}
8079neir 2370 . . . . . . 7 {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑}
81 pr2ne 7259 . . . . . . . 8 (({𝑥 ∈ {∅} ∣ 𝜑} ∈ V ∧ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ∈ V) → ({{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o ↔ {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
8240, 22, 81mp2an 426 . . . . . . 7 ({{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o ↔ {𝑥 ∈ {∅} ∣ 𝜑} ≠ {𝑥 ∈ {∅} ∣ ¬ 𝜑})
8380, 82mpbir 146 . . . . . 6 {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} ≈ 2o
842, 83eqbrtri 4054 . . . . 5 𝐴 ≈ 2o
85 enfii 6935 . . . . 5 ((2o ∈ Fin ∧ 𝐴 ≈ 2o) → 𝐴 ∈ Fin)
8672, 84, 85mp2an 426 . . . 4 𝐴 ∈ Fin
8769, 86elini 3347 . . 3 𝐴 ∈ (On ∩ Fin)
88 eleq2 2260 . . 3 (ω = (On ∩ Fin) → (𝐴 ∈ ω ↔ 𝐴 ∈ (On ∩ Fin)))
8987, 88mpbiri 168 . 2 (ω = (On ∩ Fin) → 𝐴 ∈ ω)
90 df1o2 6487 . . . . 5 1o = {∅}
91 1lt2o 6500 . . . . 5 1o ∈ 2o
9290, 91eqeltrri 2270 . . . 4 {∅} ∈ 2o
93 nneneq 6918 . . . . . 6 ((𝐴 ∈ ω ∧ 2o ∈ ω) → (𝐴 ≈ 2o𝐴 = 2o))
9470, 93mpan2 425 . . . . 5 (𝐴 ∈ ω → (𝐴 ≈ 2o𝐴 = 2o))
9584, 94mpbii 148 . . . 4 (𝐴 ∈ ω → 𝐴 = 2o)
9692, 95eleqtrrid 2286 . . 3 (𝐴 ∈ ω → {∅} ∈ 𝐴)
97 elpri 3645 . . . 4 ({∅} ∈ {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}} → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
9897, 2eleq2s 2291 . . 3 ({∅} ∈ 𝐴 → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
9996, 98syl 14 . 2 (𝐴 ∈ ω → ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
10013snid 3653 . . . . . . 7 ∅ ∈ {∅}
101 eleq2 2260 . . . . . . 7 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → (∅ ∈ {∅} ↔ ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑}))
102100, 101mpbii 148 . . . . . 6 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑})
103 biidd 172 . . . . . . 7 (𝑥 = ∅ → (𝜑𝜑))
104103elrab 2920 . . . . . 6 (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {∅} ∧ 𝜑))
105102, 104sylib 122 . . . . 5 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → (∅ ∈ {∅} ∧ 𝜑))
106105simprd 114 . . . 4 ({∅} = {𝑥 ∈ {∅} ∣ 𝜑} → 𝜑)
107 eleq2 2260 . . . . . . 7 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (∅ ∈ {∅} ↔ ∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑}))
108100, 107mpbii 148 . . . . . 6 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑})
109 biidd 172 . . . . . . 7 (𝑥 = ∅ → (¬ 𝜑 ↔ ¬ 𝜑))
110109elrab 2920 . . . . . 6 (∅ ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (∅ ∈ {∅} ∧ ¬ 𝜑))
111108, 110sylib 122 . . . . 5 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (∅ ∈ {∅} ∧ ¬ 𝜑))
112111simprd 114 . . . 4 ({∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑)
113106, 112orim12i 760 . . 3 (({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → (𝜑 ∨ ¬ 𝜑))
114 df-dc 836 . . 3 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
115113, 114sylibr 134 . 2 (({∅} = {𝑥 ∈ {∅} ∣ 𝜑} ∨ {∅} = {𝑥 ∈ {∅} ∣ ¬ 𝜑}) → DECID 𝜑)
11689, 99, 1153syl 17 1 (ω = (On ∩ Fin) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  wne 2367  wral 2475  {crab 2479  Vcvv 2763  cin 3156  c0 3450  {csn 3622  {cpr 3623   class class class wbr 4033  Tr wtr 4131  Ord word 4397  Oncon0 4398  ωcom 4626  1oc1o 6467  2oc2o 6468  cen 6797  Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  exmidonfin  7261
  Copyright terms: Public domain W3C validator