![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1ne3 | GIF version |
Description: The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
pw1ne3 | ⊢ 𝒫 1o ≠ 3o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6497 | . . . . 5 ⊢ 1o ∈ 2o | |
2 | ssnel 4602 | . . . . 5 ⊢ (2o ⊆ 1o → ¬ 1o ∈ 2o) | |
3 | 1, 2 | mt2 641 | . . . 4 ⊢ ¬ 2o ⊆ 1o |
4 | 2onn 6576 | . . . . . 6 ⊢ 2o ∈ ω | |
5 | 4 | elexi 2772 | . . . . 5 ⊢ 2o ∈ V |
6 | 5 | elpw 3608 | . . . 4 ⊢ (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o) |
7 | 3, 6 | mtbir 672 | . . 3 ⊢ ¬ 2o ∈ 𝒫 1o |
8 | 5 | sucid 4449 | . . . . 5 ⊢ 2o ∈ suc 2o |
9 | df-3o 6473 | . . . . 5 ⊢ 3o = suc 2o | |
10 | 8, 9 | eleqtrri 2269 | . . . 4 ⊢ 2o ∈ 3o |
11 | eleq2 2257 | . . . 4 ⊢ (𝒫 1o = 3o → (2o ∈ 𝒫 1o ↔ 2o ∈ 3o)) | |
12 | 10, 11 | mpbiri 168 | . . 3 ⊢ (𝒫 1o = 3o → 2o ∈ 𝒫 1o) |
13 | 7, 12 | mto 663 | . 2 ⊢ ¬ 𝒫 1o = 3o |
14 | 13 | neir 2367 | 1 ⊢ 𝒫 1o ≠ 3o |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ⊆ wss 3154 𝒫 cpw 3602 suc csuc 4397 ωcom 4623 1oc1o 6464 2oc2o 6465 3oc3o 6466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-tr 4129 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-1o 6471 df-2o 6472 df-3o 6473 |
This theorem is referenced by: 3nelsucpw1 7296 |
Copyright terms: Public domain | W3C validator |