ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne3 GIF version

Theorem pw1ne3 7290
Description: The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne3 𝒫 1o ≠ 3o

Proof of Theorem pw1ne3
StepHypRef Expression
1 1lt2o 6495 . . . . 5 1o ∈ 2o
2 ssnel 4601 . . . . 5 (2o ⊆ 1o → ¬ 1o ∈ 2o)
31, 2mt2 641 . . . 4 ¬ 2o ⊆ 1o
4 2onn 6574 . . . . . 6 2o ∈ ω
54elexi 2772 . . . . 5 2o ∈ V
65elpw 3607 . . . 4 (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o)
73, 6mtbir 672 . . 3 ¬ 2o ∈ 𝒫 1o
85sucid 4448 . . . . 5 2o ∈ suc 2o
9 df-3o 6471 . . . . 5 3o = suc 2o
108, 9eleqtrri 2269 . . . 4 2o ∈ 3o
11 eleq2 2257 . . . 4 (𝒫 1o = 3o → (2o ∈ 𝒫 1o ↔ 2o ∈ 3o))
1210, 11mpbiri 168 . . 3 (𝒫 1o = 3o → 2o ∈ 𝒫 1o)
137, 12mto 663 . 2 ¬ 𝒫 1o = 3o
1413neir 2367 1 𝒫 1o ≠ 3o
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  wne 2364  wss 3153  𝒫 cpw 3601  suc csuc 4396  ωcom 4622  1oc1o 6462  2oc2o 6463  3oc3o 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-1o 6469  df-2o 6470  df-3o 6471
This theorem is referenced by:  3nelsucpw1  7294
  Copyright terms: Public domain W3C validator