ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne3 GIF version

Theorem pw1ne3 7403
Description: The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne3 𝒫 1o ≠ 3o

Proof of Theorem pw1ne3
StepHypRef Expression
1 1lt2o 6578 . . . . 5 1o ∈ 2o
2 ssnel 4658 . . . . 5 (2o ⊆ 1o → ¬ 1o ∈ 2o)
31, 2mt2 643 . . . 4 ¬ 2o ⊆ 1o
4 2onn 6657 . . . . . 6 2o ∈ ω
54elexi 2812 . . . . 5 2o ∈ V
65elpw 3655 . . . 4 (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o)
73, 6mtbir 675 . . 3 ¬ 2o ∈ 𝒫 1o
85sucid 4505 . . . . 5 2o ∈ suc 2o
9 df-3o 6554 . . . . 5 3o = suc 2o
108, 9eleqtrri 2305 . . . 4 2o ∈ 3o
11 eleq2 2293 . . . 4 (𝒫 1o = 3o → (2o ∈ 𝒫 1o ↔ 2o ∈ 3o))
1210, 11mpbiri 168 . . 3 (𝒫 1o = 3o → 2o ∈ 𝒫 1o)
137, 12mto 666 . 2 ¬ 𝒫 1o = 3o
1413neir 2403 1 𝒫 1o ≠ 3o
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  wne 2400  wss 3197  𝒫 cpw 3649  suc csuc 4453  ωcom 4679  1oc1o 6545  2oc2o 6546  3oc3o 6547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-tr 4182  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-1o 6552  df-2o 6553  df-3o 6554
This theorem is referenced by:  3nelsucpw1  7407
  Copyright terms: Public domain W3C validator