Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1ne3 | GIF version |
Description: The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
pw1ne3 | ⊢ 𝒫 1o ≠ 3o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6383 | . . . . 5 ⊢ 1o ∈ 2o | |
2 | ssnel 4526 | . . . . 5 ⊢ (2o ⊆ 1o → ¬ 1o ∈ 2o) | |
3 | 1, 2 | mt2 630 | . . . 4 ⊢ ¬ 2o ⊆ 1o |
4 | 2onn 6461 | . . . . . 6 ⊢ 2o ∈ ω | |
5 | 4 | elexi 2724 | . . . . 5 ⊢ 2o ∈ V |
6 | 5 | elpw 3549 | . . . 4 ⊢ (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o) |
7 | 3, 6 | mtbir 661 | . . 3 ⊢ ¬ 2o ∈ 𝒫 1o |
8 | 5 | sucid 4376 | . . . . 5 ⊢ 2o ∈ suc 2o |
9 | df-3o 6359 | . . . . 5 ⊢ 3o = suc 2o | |
10 | 8, 9 | eleqtrri 2233 | . . . 4 ⊢ 2o ∈ 3o |
11 | eleq2 2221 | . . . 4 ⊢ (𝒫 1o = 3o → (2o ∈ 𝒫 1o ↔ 2o ∈ 3o)) | |
12 | 10, 11 | mpbiri 167 | . . 3 ⊢ (𝒫 1o = 3o → 2o ∈ 𝒫 1o) |
13 | 7, 12 | mto 652 | . 2 ⊢ ¬ 𝒫 1o = 3o |
14 | 13 | neir 2330 | 1 ⊢ 𝒫 1o ≠ 3o |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 ≠ wne 2327 ⊆ wss 3102 𝒫 cpw 3543 suc csuc 4324 ωcom 4547 1oc1o 6350 2oc2o 6351 3oc3o 6352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-tr 4063 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-1o 6357 df-2o 6358 df-3o 6359 |
This theorem is referenced by: 3nelsucpw1 7152 |
Copyright terms: Public domain | W3C validator |