| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1ne3 | GIF version | ||
| Description: The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| pw1ne3 | ⊢ 𝒫 1o ≠ 3o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2o 6538 | . . . . 5 ⊢ 1o ∈ 2o | |
| 2 | ssnel 4622 | . . . . 5 ⊢ (2o ⊆ 1o → ¬ 1o ∈ 2o) | |
| 3 | 1, 2 | mt2 641 | . . . 4 ⊢ ¬ 2o ⊆ 1o |
| 4 | 2onn 6617 | . . . . . 6 ⊢ 2o ∈ ω | |
| 5 | 4 | elexi 2786 | . . . . 5 ⊢ 2o ∈ V |
| 6 | 5 | elpw 3624 | . . . 4 ⊢ (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o) |
| 7 | 3, 6 | mtbir 673 | . . 3 ⊢ ¬ 2o ∈ 𝒫 1o |
| 8 | 5 | sucid 4469 | . . . . 5 ⊢ 2o ∈ suc 2o |
| 9 | df-3o 6514 | . . . . 5 ⊢ 3o = suc 2o | |
| 10 | 8, 9 | eleqtrri 2282 | . . . 4 ⊢ 2o ∈ 3o |
| 11 | eleq2 2270 | . . . 4 ⊢ (𝒫 1o = 3o → (2o ∈ 𝒫 1o ↔ 2o ∈ 3o)) | |
| 12 | 10, 11 | mpbiri 168 | . . 3 ⊢ (𝒫 1o = 3o → 2o ∈ 𝒫 1o) |
| 13 | 7, 12 | mto 664 | . 2 ⊢ ¬ 𝒫 1o = 3o |
| 14 | 13 | neir 2380 | 1 ⊢ 𝒫 1o ≠ 3o |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ⊆ wss 3168 𝒫 cpw 3618 suc csuc 4417 ωcom 4643 1oc1o 6505 2oc2o 6506 3oc3o 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-uni 3854 df-int 3889 df-tr 4148 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-1o 6512 df-2o 6513 df-3o 6514 |
| This theorem is referenced by: 3nelsucpw1 7359 |
| Copyright terms: Public domain | W3C validator |