ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne3 GIF version

Theorem pw1ne3 7313
Description: The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne3 𝒫 1o ≠ 3o

Proof of Theorem pw1ne3
StepHypRef Expression
1 1lt2o 6509 . . . . 5 1o ∈ 2o
2 ssnel 4606 . . . . 5 (2o ⊆ 1o → ¬ 1o ∈ 2o)
31, 2mt2 641 . . . 4 ¬ 2o ⊆ 1o
4 2onn 6588 . . . . . 6 2o ∈ ω
54elexi 2775 . . . . 5 2o ∈ V
65elpw 3612 . . . 4 (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o)
73, 6mtbir 672 . . 3 ¬ 2o ∈ 𝒫 1o
85sucid 4453 . . . . 5 2o ∈ suc 2o
9 df-3o 6485 . . . . 5 3o = suc 2o
108, 9eleqtrri 2272 . . . 4 2o ∈ 3o
11 eleq2 2260 . . . 4 (𝒫 1o = 3o → (2o ∈ 𝒫 1o ↔ 2o ∈ 3o))
1210, 11mpbiri 168 . . 3 (𝒫 1o = 3o → 2o ∈ 𝒫 1o)
137, 12mto 663 . 2 ¬ 𝒫 1o = 3o
1413neir 2370 1 𝒫 1o ≠ 3o
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  wne 2367  wss 3157  𝒫 cpw 3606  suc csuc 4401  ωcom 4627  1oc1o 6476  2oc2o 6477  3oc3o 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-tr 4133  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-1o 6483  df-2o 6484  df-3o 6485
This theorem is referenced by:  3nelsucpw1  7317
  Copyright terms: Public domain W3C validator