![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1ne3 | GIF version |
Description: The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
pw1ne3 | ⊢ 𝒫 1o ≠ 3o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6460 | . . . . 5 ⊢ 1o ∈ 2o | |
2 | ssnel 4582 | . . . . 5 ⊢ (2o ⊆ 1o → ¬ 1o ∈ 2o) | |
3 | 1, 2 | mt2 641 | . . . 4 ⊢ ¬ 2o ⊆ 1o |
4 | 2onn 6539 | . . . . . 6 ⊢ 2o ∈ ω | |
5 | 4 | elexi 2763 | . . . . 5 ⊢ 2o ∈ V |
6 | 5 | elpw 3595 | . . . 4 ⊢ (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o) |
7 | 3, 6 | mtbir 672 | . . 3 ⊢ ¬ 2o ∈ 𝒫 1o |
8 | 5 | sucid 4431 | . . . . 5 ⊢ 2o ∈ suc 2o |
9 | df-3o 6436 | . . . . 5 ⊢ 3o = suc 2o | |
10 | 8, 9 | eleqtrri 2264 | . . . 4 ⊢ 2o ∈ 3o |
11 | eleq2 2252 | . . . 4 ⊢ (𝒫 1o = 3o → (2o ∈ 𝒫 1o ↔ 2o ∈ 3o)) | |
12 | 10, 11 | mpbiri 168 | . . 3 ⊢ (𝒫 1o = 3o → 2o ∈ 𝒫 1o) |
13 | 7, 12 | mto 663 | . 2 ⊢ ¬ 𝒫 1o = 3o |
14 | 13 | neir 2362 | 1 ⊢ 𝒫 1o ≠ 3o |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∈ wcel 2159 ≠ wne 2359 ⊆ wss 3143 𝒫 cpw 3589 suc csuc 4379 ωcom 4603 1oc1o 6427 2oc2o 6428 3oc3o 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-nul 4143 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-ral 2472 df-rex 2473 df-v 2753 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-uni 3824 df-int 3859 df-tr 4116 df-iord 4380 df-on 4382 df-suc 4385 df-iom 4604 df-1o 6434 df-2o 6435 df-3o 6436 |
This theorem is referenced by: 3nelsucpw1 7250 |
Copyright terms: Public domain | W3C validator |