| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1ne3 | GIF version | ||
| Description: The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| pw1ne3 | ⊢ 𝒫 1o ≠ 3o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2o 6596 | . . . . 5 ⊢ 1o ∈ 2o | |
| 2 | ssnel 4661 | . . . . 5 ⊢ (2o ⊆ 1o → ¬ 1o ∈ 2o) | |
| 3 | 1, 2 | mt2 643 | . . . 4 ⊢ ¬ 2o ⊆ 1o |
| 4 | 2onn 6675 | . . . . . 6 ⊢ 2o ∈ ω | |
| 5 | 4 | elexi 2812 | . . . . 5 ⊢ 2o ∈ V |
| 6 | 5 | elpw 3655 | . . . 4 ⊢ (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o) |
| 7 | 3, 6 | mtbir 675 | . . 3 ⊢ ¬ 2o ∈ 𝒫 1o |
| 8 | 5 | sucid 4508 | . . . . 5 ⊢ 2o ∈ suc 2o |
| 9 | df-3o 6570 | . . . . 5 ⊢ 3o = suc 2o | |
| 10 | 8, 9 | eleqtrri 2305 | . . . 4 ⊢ 2o ∈ 3o |
| 11 | eleq2 2293 | . . . 4 ⊢ (𝒫 1o = 3o → (2o ∈ 𝒫 1o ↔ 2o ∈ 3o)) | |
| 12 | 10, 11 | mpbiri 168 | . . 3 ⊢ (𝒫 1o = 3o → 2o ∈ 𝒫 1o) |
| 13 | 7, 12 | mto 666 | . 2 ⊢ ¬ 𝒫 1o = 3o |
| 14 | 13 | neir 2403 | 1 ⊢ 𝒫 1o ≠ 3o |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ⊆ wss 3197 𝒫 cpw 3649 suc csuc 4456 ωcom 4682 1oc1o 6561 2oc2o 6562 3oc3o 6563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-1o 6568 df-2o 6569 df-3o 6570 |
| This theorem is referenced by: 3nelsucpw1 7427 |
| Copyright terms: Public domain | W3C validator |