ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ruALT GIF version

Theorem ruALT 4597
Description: Alternate proof of Russell's Paradox ru 2996, simplified using (indirectly) the Axiom of Set Induction ax-setind 4583. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ruALT {𝑥𝑥𝑥} ∉ V

Proof of Theorem ruALT
StepHypRef Expression
1 vprc 4175 . . 3 ¬ V ∈ V
2 df-nel 2471 . . 3 (V ∉ V ↔ ¬ V ∈ V)
31, 2mpbir 146 . 2 V ∉ V
4 ruv 4596 . . 3 {𝑥𝑥𝑥} = V
5 neleq1 2474 . . 3 ({𝑥𝑥𝑥} = V → ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V))
64, 5ax-mp 5 . 2 ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V)
73, 6mpbir 146 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105   = wceq 1372  wcel 2175  {cab 2190  wnel 2470  Vcvv 2771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-setind 4583
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-v 2773  df-dif 3167  df-sn 3638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator