ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ruALT GIF version

Theorem ruALT 4544
Description: Alternate proof of Russell's Paradox ru 2959, simplified using (indirectly) the Axiom of Set Induction ax-setind 4530. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ruALT {𝑥𝑥𝑥} ∉ V

Proof of Theorem ruALT
StepHypRef Expression
1 vprc 4130 . . 3 ¬ V ∈ V
2 df-nel 2441 . . 3 (V ∉ V ↔ ¬ V ∈ V)
31, 2mpbir 146 . 2 V ∉ V
4 ruv 4543 . . 3 {𝑥𝑥𝑥} = V
5 neleq1 2444 . . 3 ({𝑥𝑥𝑥} = V → ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V))
64, 5ax-mp 5 . 2 ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V)
73, 6mpbir 146 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105   = wceq 1353  wcel 2146  {cab 2161  wnel 2440  Vcvv 2735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-v 2737  df-dif 3129  df-sn 3595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator