Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ruALT | GIF version |
Description: Alternate proof of Russell's Paradox ru 2954, simplified using (indirectly) the Axiom of Set Induction ax-setind 4521. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ruALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 4121 | . . 3 ⊢ ¬ V ∈ V | |
2 | df-nel 2436 | . . 3 ⊢ (V ∉ V ↔ ¬ V ∈ V) | |
3 | 1, 2 | mpbir 145 | . 2 ⊢ V ∉ V |
4 | ruv 4534 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | |
5 | neleq1 2439 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} = V → ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V) |
7 | 3, 6 | mpbir 145 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cab 2156 ∉ wnel 2435 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-v 2732 df-dif 3123 df-sn 3589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |