ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ruALT GIF version

Theorem ruALT 4642
Description: Alternate proof of Russell's Paradox ru 3027, simplified using (indirectly) the Axiom of Set Induction ax-setind 4628. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ruALT {𝑥𝑥𝑥} ∉ V

Proof of Theorem ruALT
StepHypRef Expression
1 vprc 4215 . . 3 ¬ V ∈ V
2 df-nel 2496 . . 3 (V ∉ V ↔ ¬ V ∈ V)
31, 2mpbir 146 . 2 V ∉ V
4 ruv 4641 . . 3 {𝑥𝑥𝑥} = V
5 neleq1 2499 . . 3 ({𝑥𝑥𝑥} = V → ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V))
64, 5ax-mp 5 . 2 ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V)
73, 6mpbir 146 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105   = wceq 1395  wcel 2200  {cab 2215  wnel 2495  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-v 2801  df-dif 3199  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator