Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ruALT | GIF version |
Description: Alternate proof of Russell's Paradox ru 2959, simplified using (indirectly) the Axiom of Set Induction ax-setind 4530. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ruALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 4130 | . . 3 ⊢ ¬ V ∈ V | |
2 | df-nel 2441 | . . 3 ⊢ (V ∉ V ↔ ¬ V ∈ V) | |
3 | 1, 2 | mpbir 146 | . 2 ⊢ V ∉ V |
4 | ruv 4543 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | |
5 | neleq1 2444 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} = V → ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V) |
7 | 3, 6 | mpbir 146 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 105 = wceq 1353 ∈ wcel 2146 {cab 2161 ∉ wnel 2440 Vcvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-v 2737 df-dif 3129 df-sn 3595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |