ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ruALT GIF version

Theorem ruALT 4587
Description: Alternate proof of Russell's Paradox ru 2988, simplified using (indirectly) the Axiom of Set Induction ax-setind 4573. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ruALT {𝑥𝑥𝑥} ∉ V

Proof of Theorem ruALT
StepHypRef Expression
1 vprc 4165 . . 3 ¬ V ∈ V
2 df-nel 2463 . . 3 (V ∉ V ↔ ¬ V ∈ V)
31, 2mpbir 146 . 2 V ∉ V
4 ruv 4586 . . 3 {𝑥𝑥𝑥} = V
5 neleq1 2466 . . 3 ({𝑥𝑥𝑥} = V → ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V))
64, 5ax-mp 5 . 2 ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V)
73, 6mpbir 146 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105   = wceq 1364  wcel 2167  {cab 2182  wnel 2462  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-v 2765  df-dif 3159  df-sn 3628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator