Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ruALT | GIF version |
Description: Alternate proof of Russell's Paradox ru 2950, simplified using (indirectly) the Axiom of Set Induction ax-setind 4514. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ruALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 4114 | . . 3 ⊢ ¬ V ∈ V | |
2 | df-nel 2432 | . . 3 ⊢ (V ∉ V ↔ ¬ V ∈ V) | |
3 | 1, 2 | mpbir 145 | . 2 ⊢ V ∉ V |
4 | ruv 4527 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | |
5 | neleq1 2435 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} = V → ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V) |
7 | 3, 6 | mpbir 145 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {cab 2151 ∉ wnel 2431 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-v 2728 df-dif 3118 df-sn 3582 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |