| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ruALT | GIF version | ||
| Description: Alternate proof of Russell's Paradox ru 3027, simplified using (indirectly) the Axiom of Set Induction ax-setind 4628. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ruALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4215 | . . 3 ⊢ ¬ V ∈ V | |
| 2 | df-nel 2496 | . . 3 ⊢ (V ∉ V ↔ ¬ V ∈ V) | |
| 3 | 1, 2 | mpbir 146 | . 2 ⊢ V ∉ V |
| 4 | ruv 4641 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | |
| 5 | neleq1 2499 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} = V → ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V) |
| 7 | 3, 6 | mpbir 146 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 ∉ wnel 2495 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-v 2801 df-dif 3199 df-sn 3672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |